
Programmer's Reference Guide for the

Commodore Plus/4

Cyndie Merten • Sarah Meyer

Programmer's

Reference Guide

for the

Conunodore Plus/4

Programmer's

Reference Guide

for the

Commodore Plus/4

Cyndie Merten

Sarah Meyer

SCOTT, FOKESMAKTAND COMPANY

Glenview, miaols London

Graphics characters that appear in Table 3-1 and Appendixes C and E are used with permission of Commodore

Business Machines, Inc.

Copyright © 1986 Cyndie Merten and Sarah Meyer.

All Rights Reserved.

Printed in the United States of America.

ISBN 0-673-18249-5

Library of Congress Cataloging-in-Publication Data

Merten, Cyndie.

Programmer's reference guide for the Commodore

Plus/4.

Includes index.

1. Commodore Plus/4 (Computer)—Programming.

2. BASIC (Computer program language) 1. Meyer, Sarah C.

II. Title.

QA76.8.C65M47 1986 005.2'65 85-18409

ISBN 0-673-18249-5

2 3 4 5 6-RRC-90 89 88 87 86

The following are trademarks of Commodore Business Machines, Inc.: Commodore and the Commodore

logo, Commodore Plus/4, Commodore 16, Commodore 64, VIC-20, VIC-1541, 1531 Datassette, C2N/1530

Datassette, Modem/300 Model 1660, MPS-801, Joystick T-1341, VIC-1526, VIC Modem 1600,

Automodem 1650. The following is a registered trademark of Parker Brothers: Boggle.

Notice of Liability

The information in this book is distributed on an "As Is" basis, without warranty. Neither the author nor

Scott, Foresman and Company shall have any liability to customer or any other person or entity with

respect to any liability, loss, or damage caused or alleged to be caused directly or indirectly by the programs

contained herein. This includes, but is not limited to, interruption of service, loss of data, loss of business or

anticipatory profits, or consequential damages from the use of the programs.

Preface

The Commodore Plus/4 represents an important advance in home computer

design. The low-priced Plus/4, which Commodore refers to as its productivity

computer, includes significant improvements over the phenomenally popular

Commodore 64 and over any other computer in the home computer class. The

built-in features include an expanded version of BASIC (Version 3.5), a machine-

language monitor, graphic-drawing commands, improved disk- and error-

handling commands, and integrated software that combines three programs:

A word processor

A spread sheet, with a graph generator linked to it

A file manager

The built-in programs are accessed by a function key.

The Plus/ 4 has 64 K RAM built in, 60671 bytes of which are available for use in

BASIC. The Plus/4 also has eight defined function keys that are easy to redefine

with the KEY command. Escape key functions simplify screen editing tasks and

let you create screen windows. The Plus/4 also has simple color settings that let

you select from 121 different hues. In addition, the graphics modes let you use the

drawing commands to draw pictures in high-resolution or multicolor modes. You

can also select split-screen graphics modes that display regular text in a five-line

screen window while the top of the screen is in a graphic mode. Graphic handling

is much easier in BASIC Version 3.5 than it is in the Version 2.0 built into the

Commodore 64.

Although the Plus/4 is superior to the Commodore 64, it does have one

disadvantage: a full library of software is not yet available for the Plus/4. In

addition, the Plus/4 does not have sprite graphics, which are available on the

Commodore 64, and the Plus/4 music features are not as sophisticated, although

music is easier to program.

When Commodore introduced the Plus/4, it was called the Commodore 264.

The name was changed to Plus/4 when Commodore decided to include the

built-in integrated software. At the time of the name change, Commodore also

vi Preface

announced the Commodore 16, which is compatible with the Plus/4. The Com

modore 16 has only 16 K RAM and no built-in software. The two new computers

are compatible, so all Commodore 16 software and peripherals are compatible

with the Plus/4.

About This Book

The Programmer's Reference Guide for the Commodore Plus/4 is a reference

book for programmers of all levels. The book provides information for both

BASIC and machine language programmers. The authors assume that readers

are familiar with the general operations of the Plus/4 and understand all the

keyboard functions. Neither BASIC nor machine language is taught in this book,

but extensive information is provided on programming in both languages. Pro

grammers of either BASIC or machine language will find the information they

need to write programs for themselves or for commercial distribution.

The authors have written and tested all the programs in this book. (Please note

that the programs are copyrighted and cannot be used for commercial purposes.)

Cyndie Merten, programmer and mathematician, is a founding member of

Dyadic Software Associates, a group of microcomputer consultants. Sarah

Meyer is a free-lance technical writer who has published another book about the

Plus/4. Together they have published several articles about Commodore comput

ers. The authors combine their perspectives as programmer and writer to produce

a book that is thorough, technically accurate, and clearly written. Please note that

Commodore Business Machines, Inc. has not been involved in the preparation of

this book. The authors bear responsibility for the accuracy of the material

presented here.

The Programmer's Reference Guide for the Commodore Plus/4 is divided into

six chapters. The chapters cover BASIC, the built-in software, programming

techniques, machine language, graphics, and peripheral devices. Memory maps

and other technical information are covered in the appendixes.

Chapter 1, The BASIC Language, provides complete descriptions of all 75+

commands, 36 functions, and the system variables that constitute BASIC 3.5. To

simplify looking up BASIC keywords, the elements of BASIC 3.5 are presented

in alphabetical order, with commands, functions, and system variables inter

mixed. For each keyword, the following information is given:

1. The abbreviation (when there is one).

2. A complete syntax, so you can quickly review the order of parameters.

3. A description of all uses for the command or function.

4. An explanation and range of possible values for each parameter.

5. Examples.

Preface vii

Graphics commands are given additional coverage in Chapter 4, Programming

Graphics. Commands for controlling peripherals are also discussed in Chapter 6,

Using Peripheral Devices. Chapter 3, Some Programming Techniques, also

provides more information on BASIC commands.

The commands for use in the built-in programs are explained in Chapter 2, The

Built-in Software. Chapter 2 is divided into four sections: word processor com

mands, commands for formatting printed output, spreadsheet commands

(including commands for controlling the graph generator), and file manager

commands. Within each section, commands are explained in alphabetical order.

Examples are given where appropriate.

Chapter 3, Some Programming Techniques, is a collection of sections on

diverse programming topics. Both BASIC and machine-language programming

techniques are discussed. Sections include coverage of the following topics:

Editing the screen

Using the Escape key screen-editing functions

Using screen windows

Using text strings

Redefining the function keys

Using mathematical functions

Programming sound and music

Using arrays

Error handling

Chapter 4, Programming Graphics, explains the operations of the graphics

modes in both BASIC and machine language. Color and screen control, drawing

commands, and animation are among the topics discussed in this chapter. Many

example programs are also provided.

Chapter 5, Machine Language on the Commodore Plus/4, explains the use of

the built-in monitor commands and the application of 6502 machine-language

programming on the Plus/4. This chapter does not teach machine language, but

it does review the instruction set and describe the operating system for machine

language programmers of all levels.

Chapter 6, Using Peripheral Devices, describes the operations of the disk drive,

cassette recorder, printers, modem, and joystick in BASIC and machine lan

guage. Each peripheral, and the commands that control it, is explained in a

separate section. Particular attention is given to disk-handling operations. Disk

operating system (DOS) error messages are explained in Appendix A.

The appendixes are provided to explain additional technical information and

to provide quick reference material. The six appendixes cover error messages for

viii Preface

BASIC and DOS errors, BASIC tokens, character string (CHR$) codes, ASCII

codes, screen display codes, a musical note chart, and memory and register maps.

The Programmer's Reference Guide for the Commodore Plus/4 also contains

an extensive index that is designed to make finding information in this book

quick and easy. We advise users to consult the index first when seeking specific

information.

The authors have taken great care to ensure accuracy and thoroughness in the

topics that are presented in this book. We cannot guarantee, however, that the

book is error free. We have tried to make the book easy to use and understand,

and we hope you find it helpful and instructive. We welcome your comments and

corrections.

Acknowledgments

The authors thank Bill Hindorfffor reviewing this manual. We are grateful for his

suggestions and constructive criticism.

We thank COMMODOREMagazine for publishing a Plus/4 memory map in

their November/ December 1984 issue and Jim Butterfield for sharing his map in

Transactor (Volume 5, Issue 5).

Also of great assistance in preparing the disk drive section of this manual was

Richard Immers and Gerald G. Neufeld's book, Inside Commodore DOS.

ix

The BASIC Language

This chapter contains information on each of the BASIC commands, functions,

and system reserved variables. Other important details about BASIC are

included in the beginning sections.

The Elements of BASIC

The BASIC built into the Plus/4 is called Version 3.5. This version of BASIC is

considerably more sophisticated than the Version 2.0 built into the Commodore 64.

Version 3.5 contains about twice the number of BASIC commands and is easier

to use.

This chapter explains each of the 75+ BASIC commands in Version 3.5. In

addition, all BASIC functions are explained. The functions and the commands

are explained together in alphabetical order. The possible parameters of all

commands and functions are discussed. For some commands, such as the draw

ing commands, you must type a place-holder comma when you use the default

value for a parameter. Be sure to note the requirements for each command.

BASIC lets you perform a large variety of tasks; despite this versatility, BASIC

has very strict syntax rules. You must enter commands according to their formats

and use only legal parameters. When you make a mistake, BASIC usually aborts

the program and displays an error message. Appendix A explains the error

messages that BASIC prints to help you diagnose your mistakes. The description

of the HELP command explains how to use the HELP key to find errors in

programming lines.

Note the following definitions if you are unsure of some terms:

Keyword A keyword is a word that is reserved as part of BASIC. Keywords

include commands, parts of commands (such as TO, which is part of the FOR

command), operators, function names, and certain reserved variables such as

TI$, a hardware timing value, and ER, an error-diagnosing variable. Keywords

cannot be used as variable names or be embedded in variable names.
1

Z The BASIC Language

Function A function is a text string or numeric operation that returns a value.

You can use any of the functions that are part of BASIC, and you can create your

own with the DEF FN command.

Operator We use the term operator to mean a symbol or keyword (such as

AND) that performs a mathematical task or compares two values. The types of

operators available in BASIC are mathematical, comparison, and logical.

Parameter A parameter is a nonkeyword part of a BASIC command or func

tion. Parameters usually have multiple possible values. You supply the parameter

to define the way you want to use the BASIC command. Some parameters must

be used in a command and many others are optional.

Default Some parameters have a default value, which means that a certain

value is automatically used for that parameter if you do not specify some other

value. To select the default value, you can generally just omit the parameter. In

some commands, such as CIRCLE, you must type a placeholder comma for a

default value if additional parameters follow the default. For example, to accept

the default value for the color source in a CIRCLE command, type a comma in

the color source position. The color source is the first parameter, so the command

could look like this: CIRCLE, 160,100,60,50.

Expression Occasionally we will use the term expression to mean a number or

string.that can be a constant, variable, or function that results in an appropriate

value.

Constants and Variables

Constants are data values that you can use in a BASIC command. Variables are

symbolic names that stand for one or more possible values in a BASIC command.

For example, in the command PRINT "TOTAL:";T, the character string TOTAL

is a constant and T is a variable that stands for the numeric value being printed.

BASIC 3.S accepts three types of constants and variables:

1. Integer numbers (whole numbers)

2. Floating-point nuijibers (decimal numbers)

3. Character strings (text)

The Elements of BASIC 3

Data T^ypes

Floating-point numbers can be any type of number, whole or decimal (decimal

numbers are also called real numbers), between 2.93873588E-39 and

1.70141183E+38, the negatives of those numbers, or zero. Floating-point

numbers are stored in RAM using a 5-byte binary format.

Integer numbers can be any whole number between -32767 and 32767. (Note

that you can use larger and smaller values for floating-point numbers.) Numbers

with decimal parts are not accepted; they are truncated and ignored by BASIC.

Integer numbers are stored in RAM in a 5-byte binary format. Numbers in

integer arrays are stored as 2-byte binary numbers.

Character strings, or text strings, can be any characters in quotes, including

numbers, blank spaces, and special symbols. The only keyboard character that

cannot be directly included in a character string is a quotation mark. This is

impossible because a quotation mark is used to begin and end strings. Ifyou try to

type a quotation mark in a string, BASIC assumes the quotation mark signifies

the end of the string; any additional characters are assumed to be a variable name.

For example, the command PRINT "HELLO" MOM prints HELLO 0. BASIC

prints the 0 as the value for what it assumes is the variable MOM. However, a

quotation mark may be used in a string with the help of the CHR$ function. Note

that a number in quotation marks is treated like any text and has no mathematical

value.

BASIC discriminates between these three data types in variable form by the

way you name the variable. The three variable types are shown in Table 1-1 with

the symbols used to distinguish them.

Floating-point variables can stand for any type of number, whole or decimal,

between 2.93873588E-39 and 1.70141183E+38, the negatives of those numbers,

or zero. Integer variables can stand for any whole number between -32767 and

32767. (Note that you can use larger and smaller numbers for floating-point

variables.) Numbers with decimal parts are not accepted. If you assign a decimal

number to an integer variable, the decimal part of the number is ignored. For

Table 1-1. BASIC Variable Types

Floatingpoint Integer Character String

Symbol None % $

Meaning Decimal or Whole numbers Characters

whole numbers only in quotes

Examples X, X5, RX X%, X5%, AGE% S$, R5$, NAMES

4 The BASIC Language

example, if you assign 1.99 to X%, the value accepted fe*X% is 1.

part is truncated, not rounded.

Character string, or text string, variables can stand for My characters in

quotes, including numbers, blank spaces, and special symbols. The only key

board character that cannot be directly included in a character string is a

quotation mark. A number in quotation marks is treated like any text and has no

mathematical value.

Scientific Notation

Numbers can appear as simple numbers or in scientific notation. In scientific

notation, a number is reduced to its simplest one-whole-digit form. The number

of missing digits is shown in the exponent. The format for representing numbers

in scientific notation is as follows:

mantissa E sign exponent

The mantissa is a floating-point number with one whole digit (e.g., 1.55). The

E, which is the operator for scientific notation, stands for times 10 raised to the

followingpower. The sign is a negative or, positive sign; it indicates whether the

exponent is negative or positive. The exponent is the absolute value of the power

to which the number 10 is raised. This is always a whole number.

Both the mantissa and the exponent can be positive or negative numbers. The

following examples show how the signs of each number affect the value of the

number being represented.

Mantissa Exponent Number Example

Positive

Positive

Negative

Negative

Positive

Negative

Positive

Negative

Positive

Positive fraction

Negative

Negative fraction

1E+03

1E-03

-1E+03

-1E-03

= 1000

= .001

= -1000

= -.001

BASIC automatically displays numbers with absolute value smaller than .01 or

higher than 999999999 in scientific notation. If you enter a number outside this

range without typing it in scientific notation, BASIC rounds the number. This

rounding can cause a slightly inaccurate result if the number is used in a calcula

tion. To avoid this distortion, always enter small or large numbers in scientific

notation. In any case, BASIC can keep track of only about nine decimal digits in

the mantissa.

The Elements of BASIC 8

Variable Names

Variable names can be one letter followed by other letters or numbers, plus either

% or $ when appropriate. Note, however, that although longer variable names are

accepted, BASIC reads only the first two characters (plus $ or %) in any variable

name. Additional characters are ignored; use them only to make your program

more readable. Because BASIC reads only the first two characters, make sure all

variables in a program have unique names for the first two characters. In other

words, do not use COMPANYS and COUNTRYS as variables in the same

program unless you want them to have the same value.

Also be sure that variable names do not contain any BASIC keywords. If this

occurs, the program aborts in a SYNTAX ERROR. For example, do not use a

variable such as WORDEF, which contains the keyword DEF. Keywords cannot

appear in variable names even if they are not the first two characters.

Using Variables in Parameters

Note that in most cases a variable can be used in place of a number or text string in

a command parameter. The variable must, of course, be the right type ofvariable.

You can generally use a calculation in place of a number or numeric variable in a

command parameter. For example, any of the following forms is legal:

FOR X = 1 TO 5

FOR X = 1 TO A

FOR X = A TO B-l

Arithmetic Operators

Table 1-2 shows the operators that are used for solving mathematical problems.

Note that the multiplication symbol is an *, not an x, and that the exponentiation

symbol is an up arrow.

Table 1-2. Mathematical Operators

t Exponentiation

* Multiplication

/ Division

+ Addition

Subtraction and negation

6 The BASIC Language

BASIC solves compound mathematical problems in this order:

First Priority: Exponentiation

Second Priority: Multiplications and divisions

Third Priority: Additions and subtractions

Fourth Priority: Comparison operations

Fifth Priority: Logical NOTs

Sixth Priority: Logical ANDs

Seventh Priority: Logical ORs

When a problem contains more than one calculation from each priority group,

the problems of the same priority are solved left to right.

Parentheses override this priority scheme. BASIC solves parts of a problem

that are enclosed in parentheses before any other parts of a calculation. Multiple

problems within parentheses are solved according to the standard priority order.

Problems can contain multiple sets of parentheses, but you must be sure that the

number of left parentheses equals the number of right parentheses. When paren

theses are nested within parentheses, the calculations in the innermost set of

parentheses are solved first. *

Comparison, or Relational, Operators

BASIC recognizes six symbols that are used to compare two values. These

symbols, which are called either comparison operators or relational operators,

are described in Table 1-3. The comparison operators can be used to compare

constants, variables, numbers, or text strings.

Table 1-3. Comparison Operators

> The left-side value is greater than the right-side value.

< The left-side value is less than the right-side value.

= The values are equal.

<> or >< The values are not equal.

=> or >= The left-side value is equal to or greater than the right-side value.

<= or =< The left-side value is less than or equal to the right-side value.

Logical Operators

You can also use logical operators in calculations and in comparisons of values.

There are three logical operators: AND, OR, and NOT. These operators are also

The Elements of BASIC 7

called Boolean operators. Their role is to check the truth value of two values,

which may be constants, numeric variables, or calculations. A result of 0 is false,
and any other value is considered true.

Numeric values (operands) on either side of a logical operator should be

integer numbers, not floating-point numbers, so that they are between -32767

and 32767. If you use a floating-point number, it is converted to an integer

number. The result of a logical operation is always an integer value.

You can also use the logical operators to AND or OR individual bits (binary

digits) in two operands. You can use NOT to invert individual bits in a single
operand.

The following chart shows how each of the logical operators provides a result

after combining the truth values of two values. A value of -1 is used for a true
result.

-1AND-1 = -1 -1OR-1=-1 NOT-1= 0 -1 XOR -1 = 0

-1 AND 0= 0 -1OR 0 = -l NOT 0 = -1 -1 XOR 0 = -l

0AND-l= 0 0OR-l = -l 0XOR-l=-l

OAND 0=0 0OR 0= 0 0 XOR 0= 0

Logical AND

AND requires both values to be true for the result of the ANDed expression to be

true. Any other combination produces a false result. AND lets you set compound

comparisons in a conditional command such as IF or WHILE. When you join a

compound IF or WHILE command with AND, the result of the compound

comparison is false if one or both of the conditions are false. For example

10 INPUT "AGE, ANNUAL INCOME"; X, Y

20 IFX=>60ANDY<=10000 THENPRINT "ELIGIBLE": ELSE PRINT

"INELIGIBLE"

RUN

AGE, ANNUAL INCOME ? 60,15000

INELIGIBLE

RUN

AGE, ANNUAL INCOME ? 65, 9900

ELIGIBLE

The IF command in the first execution is false because only one IF condition is

true (X is greater than or equal to 60, but Y is not less than or equal to 10000).

Therefore the THEN clause does not execute, and the ELSE clause does execute.

In the second execution of the program, the IF command is true because both the

first AND the second condition are true.

8 The BASIC Language

Logical OR

OR requires only one of the two conditions to be met for the compound expres

sion to be true. An ORed comparison is false only when both values are false. For

example

10 INPUT "AGE, ANNUAL INC0ME";X, Y

20 IF X=>60 ORY<=10000 THEN PRINT "ELIGIBLE": ELSE PRINT

"INELIGIBLE"

RUN

AGE, ANNUAL INCOME ? 60, 15000

ELIGIBLE

RUN

AGE, ANNUAL INCOME ? 65, 9900

ELIGIBLE

RUN

AGE, ANNUAL INCOME ? 55, 12000

INELIGIBLE

This modification of the previous program shows the difference between AND

and OR. In the first program, the input 60 and 15000 makes the IF command false

because both conditions must be met before the IF command is true. In the

second program with OR in the IF command, the same input makes the IF

command true because only one of the two conditions has to be met for the whole

IF command to be true, the third execution shows that the only time ORed IF

commands are false is when NEITHER condition is met.

Logical NOT

NOT is somewhat different from AND and OR. NOT does not compare two

values. Instead, NOT lets you negate any value or comparison operator. For

example, we will add NOT to an IF command that compares a value to see if it is

greater than another value: IF NOT X > Y. Without the NOT, this command

checks to see if X is greater than Y. When NOT is added, this command checks to

see if X is NOT greater than Y; in other words, if X is less than or equal to Y.

When you use NOT, you must type NOT before the values you are comparing.

This may seem awkward because we would say "if X is NOT greater than Y," but

The Elements of BASIC 9

you must put the NOT just before the value or comparison to negate or the

command will cause a syntax error, which always stops a program. You might

think of NOT as changing the meaning of X > Y to "unless X is greater than Y."

The following comparisons show how NOT affects comparison operators. The

comparisons on the right are the same as those on the left:

X>Y same as NOTXOY

X<=Y same as NOTX>Y

XO Y same as NOT X = Y

X = Y same as NOTXOY

The last NOT clause contains a double negative: NOT and <> (not equal).

Double negatives, though discouraged in most English applications, are accept

able in BASIC. But like double negatives in English, double negatives in BASIC

cancel each other, so NOT XO Y is the same as X = Y.

This short program uses NOT to make the opposite of the comparison opera
tor typed in the IF command:

10 INPUT "WHAT'S YOUR AGE"; A

20 IF NOT A => 21 THEN PRINT "USER IS A MINOR": ELSE PRINT
"OK"

RUN

WHAT'S YOURAGE ? 20

USER IS A MINOR

RUN

WHAT'S YOUR AGE ? 21

OK

The NOT makes the greater-than-or-equal-to symbol mean this: unless A is

greater-than-or-equal-to 21, THEN print USER IS A MINOR. The comparison

is the same as IF A < 21.

Exclusive OR (XOR)

The exclusive OR, which is called XOR, is not a standard logical operator. XOR

is used in machine language (EOR), and it is used in the WAIT command to

invert the comparison of two bits. When both XORed bits have the same value,

10 The BASIC Language

either both 0 or both 1, the result of the comparison is 0. When the two XORed

bits are not equal, the result of the comparison is 1.

Comparing Text Strings

You can use the standard comparison operators to compare text strings. Strings

are compared character by character; blanks are considered to be significant

characters. So, for example, "WORD" does not equal "WORD ". Each charac

ter is evaluated according to its PET/CBM character set (CHR$) number (see

Appendix C). This character set gives a number value to every possible character.

"A" (65) is less than "B" (66) is less than "C" (67), and so forth. A blank has a value

of 32, so it is less than any letter, but significant nonetheless. "WORD" is less than

"WORD " because the blank in "WORD " gives that string a greater value.

Consider the expression A$=B$. If all characters in all character positions in

the two strings are equal, a truth result (-1) is returned. False comparisons

produce a 0 result. The result of a string comparison is always an integer value (0

or -1), so you can use the result in a mathematical calculation. Note, however,

that you cannot use a false result as a divisor because division by zero is illegal.

BASIC Abbreviations

Most BASIC keywords can be abbreviated. These time-saving abbreviations are

shown in Table 1-4. You can use abbreviations to "cheat" on the 88-character-

per-command line limitation. But when a line containing abbreviations is

LISTed, the abbreviations are converted into spelled-out keywords. You cannot

edit and reenter such a line using the screen editor if it is more than 88 characters

when LISTed. Only the first 88 characters will be accepted. Retype the line with

the abbreviations instead.

The table shows some characters in uppercase and others in lowercase. You

will no doubt usually enter programs in uppercase/ graphic mode, so abbrevia

tions will not appear in upper- and lowercase. Instead, the uppercase letters,

which must be typed with the SHIFT key, appear as graphic symbols. We use

uppercase and lowercase letters instead of uppercase and graphic symbols to

make the table easier to read. Just remember to press SHIFT when you type the

letters shown here in uppercase.

Crimcliiiig Programs

When you want a program to use less memory, there are several crunching tricks

you can use; they can be found on page 12.

The Elements of BASIC 11

Table 1-4. BASIC Abbreviations

Keyword

ABS

AND

ASC

ATN

AUTO

BACKUP

BOX

CHAR

CHR$

CIRCLE

CLOSE

CLR

CMD

COLLECT

COLOR

CONT

COPY

COS

DATA

DEC

DEF

DELETE

DIM

DIRECTORY

DLOAD

DO

DRAW

DSAVE

ELSE

END

ERRS

EXIT

EXP

FN

FOR

FRE

GET

GO

GOSUB

GOTO

Abbreviation

aB

aN

aS

aT

aU

bA

bO

chA

cH

cl

clO

cL

cM

colL

coL

cO

coP

—

dA

dE

deL

dl

diR

dL

—

dR

dS

eL

eN

eR

exl

eX

—

fO

fR

gE

goS

go

Keyword

GRAPHIC

GSHAPE

HEADER

HELP

HEX$

IF

INPUT

INPUT#

INSTR

INT

JOY

KEY

LEFTS

LEN

LET

LIST

LOAD

LOCATE

LOG

LOOP

MIDS

MONITOR

NEW

NEXT

NOT

ON

OPEN

OR

PAINT

PEEK

POKE

POS

PRINT

PRINT#

PUDEF

RCLR

RDOT

READ

REM

RENAME

Abbreviation

gR
gs

heA

heL

hE

iN

inS

jo

kE

leF

IE

11

10

loC

loO

ml

mO

nE

nO

oP

pA

pE

pO

?

pR

pU

rC

rD

rE

reN

12 The BASIC Language

Table 1-4. BASIC Abbreviations (continued)

Keyword Abbreviation Keyword Abbreviation

RENUMBER

RESTORE

RESUME

RETURN

RGR

RIGHTS

RLUM

RND

RUN

SAVE

SCALE

SCNCLR

SCRATCH

SGN

SIN

SOUND

SPC(

SQR

SSHAPE

renU

reS

resU

reT

rG

fl

rL

rN

rU

sA

scA

sC

scR

sG

si

sO

sP

sQ

sS

STEP

STOP

STR$

SYS

TAB(

TAN

THEN

TO

TRAP

TROFF

TRON

UNTIL

USING

USR

VAL

VERIFY

VOL

WAIT

WHILE

stE

sT

stR

sY

tA

—

tH

—

tR

troF

trO

uN

usi

uS

vA

vE

vO

wA

wH

Use the lowest possible line numbers. References to large line numbers take up

more memory than those to small line numbers. When you are writing the

program, it is smart to leave gaps between line numbers so you can easily add

lines. Once the program is finished, however, you can use the RENUMBER

command to change all the line numbers to lower, closer-together numbers.

Put multiple commands on a line. Separate commands on the same line with a

colon. There is no need to put spaces between the commands. Remember,

however, that each program line cannot exceed 88 characters in length.

Delete spaces between characters in the program lines. Although spaces

improve readability, they take up memory. Blanks are never required, so omit

them if you need to.

Remove REM statements if you need more room. Though useful for docu

menting a program, they do use up memory.

• Use variables in place of long numbers and calculations that are repeated in a

program.

> Use arrays to hold groups of data. Arrays, which are explained elsewhere in

this chapter, handle large groups of data as an organized list. If an array

The Elements of BASIC 13

represents integers that never go outside the range -32767 to 32767, then it

should be defined as an integer array (with the % designation).

• Use DEF FN to define frequently used functions.

• Use READ and DATA commands to handle long lists of data whether or not

the data items are related. DATA commands can be placed together at the end

of the program and quickly accessed, data item by data item.

• Write subroutines to handle repeated tasks. Subroutines improve program

organization, and they can save memory by omitting needlessly repeated

commands.

Note: When BASIC searches for a program line to GOTO or GOSUB, it

starts at the beginning of the program and looks sequentially. To speed

execution, place DATA commands at the end of the program so that BASIC

does not have to search through them when looking for a program line. Place

frequently used subroutines near the beginning ofthe program so they are easy
for BASIC to find.

You can save typing time (though not execution time) by defining function

keys to print commands you use repeatedly. Function keys are easy to define, and

you will save a lot of time if you can just press a key instead of typing the

command. For example, if your program will have a lot of INPUT commands,

define a function key to print INPUT.

Defining a function key to print a command is also useful when you are

experimenting with a graphic-mode drawing. Define a key as one of the graphic

mode commands (e.g., KEY 3,"GRAPHIC 2,1") so you can quickly switch to the

drawing mode you want to use. The quickest way to get out of one ofthe drawing

modes is to commit a syntax error. Just type a letter and press RETURN. A

syntax error automatically cancels the current drawing mode and returns to

text/graphic mode. The drawing in the graphic mode is unaffected by the syntax

error. To get back to it, issue a GRAPHIC command without the, 1, which clears

the graphic mode screen.

BASIC Version 3.5 Commands, Functions, and SystemVariables

The rest of this chapter explains BASIC commands, functions, and reserved

system variables together in alphabetical order.

ABS Abbr. aB

ABS (number)

ABS is the numeric function that finds the absolute value of the number

enclosed in parentheses. The absolute value of a number is that number without

14 The BASIC Language

any sign, which means negative signs are removed from negative numbers. The

absolute value of 0 is 0.

Parameter: any number, positive or negative, or a numeric expression

To display the absolute value for a number, put the ABS function in a PRINT

command.

Examples: PRH5TT ABS(35)

35

PRIlTTABS(-35)

35

ASC

ASC (string)

Displays

Displays

Abbr. aS

the

the

absolute

absolute

value

value

of

of

35.

-35.

ASC is the numeric function that finds the character-string code for the first

character of the string inside parentheses. ASC is the opposite of the CHR$(x)

function, which finds the character for the character-string code number enclosed

in parentheses.

Parameter: any character or key in quotation marks, or a string expression

If you type more than one character in an ASC function, the computer prints

the code for only the first character in the string; all other characters are ignored.

To display the character-string code for a character, put the ASC function in a

PRINT command.

Examples: PRINT ASC("M") Displays the CHR$ code for M.

77

PRINT ASC("||3|") Displays the CHR$ code for the shifted CLEAR
147 key, which is printed as a reversed heart.

PRINT ASC("MAP") Displays the CHR$ code for only the first letter in

77 the string MAP.

ATN Abbr. aT

ATN (number)

ATN is the numeric function that finds the arctangent in radians of the number

enclosed in parentheses. For more information, see the Mathematical Calcula

tions section of Chapter 3.

BASIC Version S.S Commands, Functions, and System Variables 1S

Parameter: any numeric expression

Examples: PRI3STT ATN(1)

.785398163

Displays the arctangent of 1 in radians.

PKTKTT ATM*(-S)*180/7r Displays the arctangent of -2 in degrees.

-63.4349488

AUTO

AUTO increment

Abbr. aU

AUTO prints BASIC program line numbers automatically, which is useful

when you are writing a long program. After you turn on automatic line number

ing, type the first line in your program (using any line number) and press

RETURN. Thereafter, AUTO prints the next line number as soon as you press

RETURN at the end of each line. The increment between the line numbers is

determined by the number you type in the AUTO command.

Parameter: increment number

The increment number can be any positive number that does not exceed 63999,

which is the highest possible line number for a BASIC program. Entering a line

number greater than 63999 creates a syntax error.

Turning OffAUTO

You have to be in immediate mode to use the AUTO command. AUTO prints a

line number every time you press RETURN on a program line containing more

than the line number. Press RETURN on a line containing only the line number

to stop the line numbering. Then issue an AUTO 0 or AUTO with no number to

turn off automatic line numbering.

You can also issue a RUN command instead of AUTO 0 or AUTO, but note

that you must issue one of these commands to turn off automatic line numbering.

Example: AUTO SO

50 INPUT "DATE"; D

70 IITPUT "TIME"; T

Automatically numbers lines in increments of 20.

Type any number for the first line number.

AUTO adds the increment value (20) and prints

the next line number.

16 The BASIC Language

BACKUP Abbr. bA

BACKUP Ddrive TO Ddrive, ON Uunit

Duplicates an entire disk in a dual disk drive. BACKUP does not let you copy

just parts of disks or change the names of files or of the disk. Use the COPY

command to duplicate individual files or change file names. This command does

not work with single disk drives such as the 1541.

The disk you are copying is the "master" disk; you are copying from the master

TO the blank disk.

Cautions: 1. BACKUP headers the recipient disk before copying files from the master disk.

Since headering a disk erases all the information stored on the disk, do not

BACKUP onto a disk that contains files you want to keep. Use'a blank disk or

a disk that contains information you no longer need.

2. BACKUP does not affect files on the master disk. However, since BACKUP

does header the recipient disk, double check to be sure the master disk is in the

drive you name as the master drive in the BACKUP command. To avoid

accidentally backing up in the wrong direction, always put the master disk in

drive 0.

3. BACKUP copies files indiscriminately—errors and all. For this reason, many

programmers prefer to use the COPY command or a copy utility program to

duplicate disks. If the master disk contains errors, do not use BACKUP.

Parameters: D disk drive number TO D disk drive number, U unit number

1. Drive numbers are either 0 or 1. No other numbers are allowed. The first disk

drive number indicates which drive contains the master disk, whose contents

you are copying. You should always put the master disk in drive 0.

2. TO is part of the command and must be included.

3. The second disk drive indicates which drive contains the blank disk onto which

you are copying the information from the master disk. Always put the recipient

disk in drive 1.

4. Unit number is an optional parameter that you should rarely if ever need. Use it

only if you have more than one dual disk drive connected to your computer,

and you are using a device other than unit 8 in the backup procedure. You can

precede the unit number with ON, but ON is not required. The unit number

must be between 8 and 11.

Note: The drive and unit number parameters can be specified with a vari

able or expression in parentheses.

Examples: BACKUP BO TO Dl Copies all the files on the disk in drive 0 onto

the disk in drive 1.

BASIC Version 3.5 Commands, Functions, and System Variables 17

BACKUP DO TO Dl, U9 Copies the disk in drive 0 of unit 9 onto the disk

in drive 1 of unit 9.

BOX Abbr.bO

BOX color source, corner coordinate, corner coordinate, angle, fill

Draws a rectangular shape in any of the four graphic drawing modes. You

supply the column, row coordinates of two opposite corners. You can include a

parameter to draw the rectangle at a tilted angle, and you can draw the box as an

outline or as a solid shape.

BOX can be executed only in a graphic mode. For more information on the

graphic modes and on the coordinates for the BOX command, see Chapter 4.

Parameter Values Default

Color source

First corner coordinate

Column coordinate

Row coordinate

Second corner coordinate

Column Coordinate

Row coordinate

Angle

Fill

0-3

0-319 (high-res modes)

0-159 (multicolor modes)

0-199

0-319 (high-res modes)

0-159 (multicolor modes)

0-199

0-360

0 (outline) or 1 (solid)

1

pixel cursor

0 (no angle)

0

1. The color source indirectly selects the color for the drawing. There are five

color sources, but color source 4 (the border color) cannot be used in drawing

commands. Color sources 2 and 3 can be used only in multicolor modes.

0 screen background color

1 foreground color

2 multicolor mode extra color 1

3 multicolor mode extra color 2

The color source number you include in the BOX command tells the computer

to draw in the current color for that source. For example, if you select 1, the

computer draws the box in the current foreground color. If you want to use a

color other than one of the current source values, you must first use the COLOR

command to change one of the source values. Only sources 1 and 2 can be used to

18 The BASIC Language

draw with more than one color on the same screen. Sources 0 and 3 are global

colors, which means that changing the colors for these sources affects all shapes

previously drawn with them.

If you want to use the default value (1, the current foreground color), you do

not have to type a number, but you must type a comma before the next parameter.

2. The first set of coordinates names the location of one corner of the box. The

second set names the location of the opposite corner of the box. The second set of

coordinates can be omitted. They will default to the pixel cursor. If you omit the

coordinates, type one comma instead. These are the only coordinates you give.

You can name either of the opposite sets of corners, and you can enter them in

any order (i.e., you do not have to enter the top corner first). If you name corners

with the same row or column coordinate, you will draw a line instead of a

rectangle.

3. After the box is drawn, the pixel cursor is at the location of the second set of

coordinates.

4. You can draw the box tilted at any angle from 0 to 360. For example, a

45-degree angle draws a diamond shape. The default value is 0, no tilting. The

tilting is done after the box is calculated. Therefore, the corners will not be at the

specified coordinates. If you omit this parameter and use the Fill parameter, you

must type a comma in place of the angle parameter.

5. You can draw the box as an outline or as a solid block. The default is 0,

which draws an outline. If you want to draw a solid block, select 1 as the value for

this parameter. No other values are legal. Since this is the last parameter, you do

not need to type a comma to take its place if you do not use this parameter.

Examples: BOX, 60,50, 840,150 Draws a rectangle in outline.

BOX, 80,50, 150,130,45,1 Draws a solid rectangle tilted at 45

degrees.

10 GRAPHIC 2,1 Enters split-screen high-resolution mode.

20 COLOR 1,5,4 Changes the color of source 1, thereby

indirectly changing the color used to

draw the boxes.

30 FOR A=0 TO 360 STEP 10 Sets up a loop to increment the value of

the angle parameter in the BOX

command.

40 BOX, 120,50, 200,100, A Draws a rectangle at the angle of A.

50 NEXT

CHAR Abbr. chA

CHAR color source, column coordinate, row coordinate, string, reverse mode

Displays a message at a specified screen location in any text or graphic mode.

You give the column and row coordinates of the message in the CHAR com

mand. You can also print the message in reversed-image mode.

BASIC Version 3.5 Commands, Functions, and System Variables 19

CHAR is similar to the text-printing capabilities of PRINT, but CHAR also

lets you easily position the message on the screen. In addition, CHAR can display

messages in graphic modes, but PRINT cannot.

CHAR lets you print on top of, above, or below other messages. Because you

can position each CHAR message, you can place messages anywhere in relation

to each other.

CHAR has some slightly different features in the text and graphic modes.

When you use CHAR in a text mode only, you can print in flashing mode, and

you can include color changes and other special key commands that you can use

in PRINT commands.

Parameter Values Default

Color source

Column coordinate

Row coordinate

Message

Reverse mode

0-3

0-39

0-24

String expression

Oor 1

1

O(off)

1. The color source indirectly selects the color for the drawing. There are five

color sources, but color source 4 (the border color) cannot be used with drawing

commands. Color sources 2 and 3 can be used only in multicolor modes.

0 screen background color

1 foreground color (default value)

2 multicolor mode extra color 1

3 multicolor mode extra color 2

The color source number you include in the CHAR command tells the com

puter to use the current color for that source to print the message. For example, if

you select 1, the computer prints the message in the current foreground color. If

you want to use a color other than one of the current source values, you must first

use the COLOR command to change one ofthe source values. Only sources 1 and

2 can be used to draw with more than one color on the same screen. Sources 0 and

3 are global (whole screen) colors.

If you want to use the default value (1 > the current foreground color), you do

not have to type a number, but you must type a comma before the next parameter.

2. Even when you are displaying a message in a graphic mode, use the standard

text column (0-39) and row (0-24) numbers. You do not place CHAR messages

with the graphic mode 320-by-200 coordinates because you are placing whole

letters, not small dots. Be careful; this can be confusing.

3. The message must be in quotes, just as a PRINT command message. You

20 The BASIC Language

can also use a text-string variable as the message parameter. You can concatenate

strings to the message by adding a plus sign and the string. For example:

CHAR,2,2,"HELLO, "+N$+" HOW ARE YOU".

4. When you are using CHAR in a graphic mode, add a 1 as the final

parameter when you want to display the message in reversed image. The default is

0, no reversed image.

When you are using CHAR in a text mode, do not use the Reversed Mode

parameter. If you want to display the CHAR message in reversed image, use the

CONTROL and RVS ON keys inside the quotes, just as you would in a PRINT

command. This method does NOT work in a graphic mode.

When you are using CHAR in a text mode, you can use flashing mode and

change character color by pressing CONTROL and FLASH ON, and CON

TROL or £§ and the color key inside the quotes, just as you would in a PRINT

command. You cannot use flashing mode in a graphic mode, and you cannot use

this method to change foreground color in a graphic mode.

You can include special key commands such as the CLEAR key in a CHAR

command in a text mode but not in a graphic mode. If you include a special key

symbol in a graphic mode CHAR command, the computer prints the key's

graphic symbol, but does not execute the key command. For example, if you

include a CLEAR key inside the CHAR quotes in a graphic mode, the computer

does not clear the screen, but it does print the heart symbol that stands for the

CLEAR key in quote mode.

If you use the CHAR command in a split screen mode, the message will be

printed on the graphic screen, not on the text screen. Even if the coordinates

indicate that the message should be placed on the text area of the screen (bottom

five lines), it will be plotted on the (unseen) graphic screen instead.

Examples: 10 GRAPHIC 1,1

SO CIRCLE, 160,100, 60,50,,,,120

30 CHAR, 16,17, "ISOSCELES",1 Displays the message

ISOSCELES at column 16, row

17 in reverse.

40 CHAR, 16,18 "TRIANGLE" Displays TRIANGLE at column

16, row 18.

10 GRAPHIC 0,1 Switches to text/graphic mode.

SO IinPUT "WHAT'S YOUR TJAME"; A$

30 CHAR, 10,20,"HELLO, "+A$

CHR$ Abbr. cH

CHR$ (number)

Finds the keyboard definition represented by the character code in paren

theses. Each key on the keyboard—including key combinations such as SHIFT

BASIC Version 3.5 Commands, Functions, and System Variables 21

and CLEAR—has a unique character-string value that can be called by its CHR$

code. You can use CHR$ values to do anything to the screen output that you can

do by pressing a key, such as changing character colors, turning on reversed-

image mode, or deleting a character.

Printing the CHR$ value to the screen has the same effect as pressing the key.

For example, PRINT CHR$(77) is the same as PRINT "M". This feature of

CHR$ is especially useful when you want to defer the "pressing" of a key. For

example, in a BASIC program the only way to print a message that contains a

quotation mark is to use the CHR$ code for the quotation mark:

PRINT "IBM'S MOTTO IS ";CHR$(34);"THINK"; CHR$(34)

IBM'S MOTTO IS "THINK"

If you actually press the quotation mark key when you type the line, the

quotation mark opens or closes quote mode:

PRINT "IBM'S MOTTO IS "THINK""

IBM'S MOTTO IS 0

In the second PRINT command example, the computer assumes the quote

before THINK turns off quote mode. The computer also assumes that THINK is

a variable name, which is why the 0 is printed. The only way to print the quotation

mark as a character is to use its character code in a CHR$ function.

The CHR$ function is frequently used in function-key definitions to print a

quotation mark or "press" a RETURN key at the end of the key definition.

Appendix C lists all the CHR$ values. Appendix D contains the standard

ASCII codes that are used by many computers for your reference. To find a

CHR$ value, you can use the ASC function, which finds the code for any key.

CHR$ codes are used in I/O to devices other than the screen as well. The

printable characters are generally the same, but the control functions will be

different with a printer, for example, than with the screen.

Example: PRINT CHR$(S8); A; CHR$(1S9); B Changes the character color to

red, prints the value for A,

changes the character color to

orange, and prints B.

CIRCLE Abbr. cl

CIRCLE color source, center coordinates, x radius, y radius, start arc, end

arc, angle, increment

This graphic mode command draws circles as well as a variety of other shapes.

CIRCLE draws curved shapes such as arcs and ovals. CIRCLE also draws any

zz The BASIC Language

polygon with regular sides. For example, you can use CIRCLE to draw an

isosceles triangle.

You can draw CIRCLE shapes tilted at any angle. If you want to draw solid

shapes, you must use the PAINT command to fill in the CIRCLE outline. Unlike

the BOX command, CIRCLE has no parameter for drawing a solid shape. See

Chapter 4 for more information on CIRCLE coordinates.

Parameter Values Default

Color source

Center coordinates

Column coordinate

High-res modes

Multicolor

Row coordinate

Column radius

High-res modes

Multicolor modes

Row radius

Arc starting angle

Arc ending angle

Angle of tilt

Segment size

0-3

0-319

0-159

0-199

0-319

0-159

0-199

0-360

0-360

0-360

0-255

1

Current pixel-cursor location

Column radius value

0

360

0

2

1. The color source indirectly selects the color for the drawing. There are five

color sources, but color source 4 (the border color) cannot be used in drawing

commands. Color sources 2 and 3 can be used only in multicolor modes.

0 screen background color

1 foreground color

2 multicolor mode extra color 1

3 multicolor mode extra color 2

The color source number you include in the CIRCLE command tells the

computer to draw in the current color for that source. For example, if you select

1, the computer draws the shape in the current foreground color. If you want to

use a color other than one of the current source values, you must first use the

COLOR command to change one of the source values. Only sources 1 and 2 can

be used to draw with more than one color on the same screen. Sources 0 and 3 are

global (whole screen) colors.

If you want to use the default value (1, the current foreground color), you do

not have to type a number, but you must type a comma before the next parameter.

BASIC Version 3.5 Commands, Functions, and System Variables 23

2. The first coordinates name the center of the shape. The default center is the

current location of the pixel cursor.

3. Horizontal radius is the distance from the center of the shape to the left and

right sides of the shape.

4. Vertical radius is the distance from the center of the shape to the top and

bottom of the shape. Because vertical dots on the high-resolution graphic screen

are slightly farther apart than horizontal dots are, when the vertical and horizon

tal radii have the same value, the shape drawn is an oval, not a circle. To draw a

circle, the vertical radius must be scaled to the horizontal radius (e.g., 50 horizon

tal, 47 vertical). For multicolor coordinates, 25 horizontal is about 47 vertical.

5. Use the starting angle only when you want to draw an arc. Zero degrees is at

the top of the screen; 180 is at the bottom; 90 is to the right; and 270 is to the left.

6. The ending angle for an arc defaults to 360 if not specified.

7. You can draw a shape tilted at an angle from 0 to 360 degrees. The default is

0, which is no tilt.

8. You choose the shape of the CIRCLE drawing by choosing the number of

degrees between the segments in the drawing. The default number of degrees

between shape segments is 2 degrees, which draws a circle.

When you draw a circle on the screen, you are actually drawing a 180-sided

polygon (360 divided by 2, the default segment value). The larger the increment of

degrees between segments, the more angular the drawing. For example, a seg

ment value of 120 draws a triangle, not a circle.

To draw a polygon with the CIRCLE command, divide 360 (the total number

of degrees in a real circle) by the number of sides you want the shape to have. For

example, to draw a hexagon, divide 360 by 6. Then use the result, 60, as the

segment parameter.

Note: Although the segment-size parameter can have a value ofup to 255, any

value between 180 and 255 draws a straight line.

Examples: 10 GRAPHIC 2,1

20 CIRCLE, 140,80, 90,50,180,320 Draws an arc.

30 CIRCLE, 160,100, 60,50,,,,90 Draws a diamond.

40 CIRCLE, 160,100, 60,50,,,90,120 Draws a triangle rotated

90 degrees.

50 CIRCLE, 160,75, 72,60 Draws a circle.

CLOSE Abbr. clO

CLOSE file number

Closes access to a peripheral device or a data file on tape or disk. CLOSE is

paired with the OPEN command, which gives access to a data file or peripheral

device. You must CLOSE the file or device with the same logical file number you

used to OPEN it.

Be sure to CLOSE files and devices when you finish accessing them; leaving

84 The BASIC Language

them OPEN leads to errors. Note that you can have only 10 files OPENed at a

time.

Parameter: logical file number

The logical file number must be the same number you used to OPEN the file.

The logical file number has no relation to the file itself; you can use any number

between 1 and 255 as long as you use the same number in commands, such as

OPEN and CLOSE, that refer to the file.

Example: 10 OPEN 4,4,7 Opens access to the printer.

20 nTPUTX$,Y$

30 PRI1TT #4, X$, Y$ Prints the values input for X$ and Y$.

40 CLOSE 4 Closes access to the printer.

CLR Abbr. cL

Clears the values of all variables without otherwise affecting the current

program. All numeric variables are reset to zero, and all text-string variables are

reset to a null string.

The CLR command is automatically executed when you issue a NEW or RUN

command. CLR is also executed when you edit a program, which is why you

cannot use CONT to resume program execution after you edit the program.

CMD Abbr. cM

CMD file number, output list

Interrupts the normal flow of output to the screen and sends the output to a

different device, such as the printer or a data file. The device or file must first be

accessed by an OPEN command.

Parameters: logical file number, list of output items

1. The logical file number must be the same number you used in the OPEN

command to access the file.

2. The list of output items is optional. It can include numeric and string expres

sions separated with commas or semicolons, just as a PRINT command.

Examples: 10 OPEN 4,4 Opens access to the printer.

20 CMD 4,"THIS IS MY PROGRAM" Directs output to printer and

prints a heading.

30 LIST Lists program to printer under

heading.

BASIC Version 3.5 Commands, Functions, and System Variables

40 PRINT* 4:CL0SE 4 Turns off the CMD command

and closes access to the printer.

The following sequence can be used in immediate mode to LIST the current

program to the printer:

0PEH4,4:CMD4:LIST

PRINT#4:CL0SE4

COLLECT Abbr. colL

COLLECT Ddrive, ON Uunit

Cleans up a disk by clearing files that were improperly closed and are inacces

sible. COLLECT removes improperly closed files from a disk and its directory so

you can store files in disk space that was rendered unusable.

Note: Never use the COLLECT command on disks that contain information

written with direct-access commands (see Chapter 6).

Parameters: drive number, U unit number

1. Drive numbers are either 0 or 1. No other numbers are allowed.

2. Unit number is an optional parameter. Use it only if you have more than one

disk drive connected to your computer, and you are using a device other than unit

8 in the COLLECT procedure. You must precede the unit number with U, and the

unit number must be between 8 and 11. You can type ON before U, but ON is not

required.

Note: The drive and unit number parameters can be specified with a variable

or expression in parentheses.

Example: COLLECT DO Gets rid of all inaccessible files on drive 0.

COLOR Abbr. coL

COLOR color source, color, luminance

Lets you change the color of the screen, the characters, the border, and the

multicolor sources. You can choose any of the 16 basic colors, and one of 8 shades

of any color except black, which has no shades.

The COLOR command lets you indirectly choose the color to be used in

drawing commands. Drawing commands such as CIRCLE do not have parame

ters for selecting color. You must first change the color with a COLOR command.

You can change character color with the color keys on the keyboard, which are

pressed with the Q or CONTROL keys. This method of selecting a character

color has two shortcomings: you cannot select a luminance level, and the color

change does not affect the value in the foreground-color source (source 1). This

0-4

1-16

0-7

None

None

7 (lightest shade)

26 The BASIC Language

means that although the new color affects the characters you type, it does not

change the color of the drawings you do in graphic modes.

Parameter Values Default

Screen color source number

Color number

Luminance value

1. There are five color sources whose color you can change with the COLOR

command:

0 screen background color

1 foreground color

2 multicolor mode extra color 1

3 multicolor mode extra color 2

4 screen border color

You cannot use the border color (source 4) in drawing commands. Color

source 1, foreground color, determines the default color of characters and graph

ics on the screen. Changing the character color with the color keys changes only

the color of characters printed in text mode. Changing the foreground color

(source 1) changes both the default graphics drawing color and the color of

characters printed in text mode.

2. You can choose any of the colors listed on the color keys by using the

following numbers:

1 = black 9 = orange

2 = white 10 = brown

3 = red 11 = yellow-green

4 = cyan 12 = pink

5 = purple 13 = blue-green

6 = green 14 = light blue

7 = medium blue 15 = dark blue

8 = yellow 16 = light green

3. You can choose one of eight shades of a color by adding a luminance level.

To choose the darkest shade, use 0; the shades are progressively lighter, 7 being

the brightest.

BASIC Version 3.5 Commands, Functions, and System Variables 27

The luminance setting is optional. The default value is 7, which selects the

brightest shade of the color. When you use the color keys on the keyboard to

change the character color, a preset luminance value is automatically used.

Black has no luminance values, although it is not an error to include this

parameter when you are selecting black. The luminance settings 0 through 6 for

white are shades of gray.

Examples: COLOR 0,12, 3 Changes the screen background to medium pink.

COLOR 1, 3, 0 Changes the foreground color to dark red.

CONT Abbr. cO

Lets you restart a BASIC program after you have interrupted its execution

with the STOP key, the STOP command, or an END command in a program.

The program resumes at the point in the program where execution was inter

rupted, and all variables retain their most-recent values.

You cannot resume execution with CONT if any of the following events have

occurred between STOP and CONT:

• You change or add lines to the program.

• You move the cursor to a program line and press RETURN with or without

changing the line.

• The program stopped because of an error (in which case an error message

would have appeared on the screen).

• You do anything to cause an error after suspending the program.

• You execute a CLR command.

COPY Abbr.coP

COPY Ddrive, old file name TO Ddrive, new file name, ON Uunit

Makes a duplicate of a disk file or an entire disk. On a single disk drive, such as

the 1541, you can copy a file only onto the same disk. You must give a copy on the

same disk a different name from the original file. The COPY procedure does not

affect the master file. In addition, you can copy from one drive to another if you

have a dual disk drive. You cannot use the COPY command to copy from one

single disk drive to another with different unit (device) numbers.

Unlike the BACKUP command, COPY does not header the recipient disk

before duplicating the file(s). The advantage of this difference is that you can use

COPY to add files to a disk that already contains files you want to keep. The only

drawback is that you must take care not to COPY a group of files onto a disk that

does not have enough room. Avoid this problem by checking the directories of

both disks before you issue the COPY command. A 1541 disk can hold up to 664
blocks (256 bytes each) of information.

38 The BASIC Language

Also unlike the BACKUP command, COPY does not duplicate disk errors in a

file. If a file you are COPYing contains a disk error, the file is not copied. The

advantage of this difference is that you do not duplicate inaccessible files.

Parameter Values Default

drive number, 0 or 1 0

"master file" any file name in quotes

TO drive number, 0 or 1 0

"receiving file", any file name in quotes

U unit number 8-11 8

1. Both drive numbers can be omitted if you are making a duplicate of a file on

the same disk.

2. The Master File is the name of the file you want to copy. The name must be

in quotes.

3. TO is a necessary part of the COPY command. The drive number can be

omitted, but TO cannot.

4. The Receiving File is the name of the file that will become the copy of the

master file. The receiving file name can be the same as the master file, which is

likely when you are copying from one drive to another. The name must be in

quotes. The receiving file name must be different if you are copying afile onto the

same disk.

5. Unit number is an optional parameter. Use it only if you have more than

one disk drive connected to your computer and you are using a device other

than unit 8 in the COPY procedure. You must precede the unit number with U,

and the unit number must be between 8 and 11. You can type ON before the unit

number, but ON is not required. Most people will never need the unit number

option.

Note: The drive and unit number parameters and the file names can be

specified with a variable or expression in parentheses.

Examples: COPY DO, "ADDR" TO Dl, "ADDR" Copies the file ADDR from the
disk in drive 0 to the disk in drive 1.

COPY DO TO Dl Copies all the files on the disk in

drive 0 to the disk in drive 1.

COPY "MEM01" TO "MEM02" Copies the file MEMO1 onto the

same disk, renaming the file

MEMO2. This does not affect

MEM01.

BASIC Version 3.5 Commands, Functions, and System Variables 29

Abbr. noneCOS

COS (number)

COS is the numeric function that finds the cosine of the angle in parentheses.

The angle must be expressed in radians. For more information, see the Mathe

matical Calculations section of Chapter 3.

Parameter: any number or numeric expression

Examples: PRINT COS(tt)

-1

PRINT C0S(30*7r/180)

.866025404

DATA

DATA data list

Prints the cosine of an angle of n radians (180

degrees).

Prints the cosine of an angle of 30 degrees.

Abbr. dA

Contains a list of values that are available for assignment to variables by

READ commands. DATA commands are complements to READ commands;

neither command works without the other.

DATA items can be either numbers or text. Text data does not need to be

enclosed in quotes unless it includes an embedded comma or colon, although the

text items are treated as if they were in quotes. Since DATA commands always

contain constant values, not variable names, the computer assumes that any

nonnumeric DATA item is text.

DATA commands can contain any number of values as long as the list is no

longer than 88 characters on the screen. READ commands can get data from

DATA commands anywhere in the program.

You must have enough DATA values in a program to assign a value to every

variable in the READ commands that are executed in the program. If there are

not enough DATA values, the program is aborted and the error message OUT

OF DATA is displayed.

When DATA items are READ, the computer keeps track of the last value read

by marking its place with a data pointer. You can reREAD DATA items by using

the RESTORE command, which resets the data pointer to the beginning of a
DATA command.

Parameter: list of data values separated by commas

Example:

DATA items must be separated by commas. Text items do not have to be in
quotes unless they contain commas or colons.

10 DATA 1,2,3,4

20 READA,B

30 PRLKTT "A =";A;"B =";
READs the first two values from

the DATA list.

30 The BASIC Language

40 READ C,D READs the next two values

50 PRINT "C =";C;"D =";D from the DATA list.

60 RESTORE Resets the data pointer to the

beginning of the DATA list.

70 READ X,Y,Z, READs the first three values

90 PRINT "X =";X;"Y = ";Y;"Z =";Z from the RESTOREd DATA

list.

RUN

A=1B=2

C = 3 D = 4

X= 1 Y=2 Z = 3

DEC Abbr. none

DEC (string)

Finds the decimal (base 10) value of a hexadecimal base 16) number. Hexa

decimal base digits are 0 through F, which equals decimal 15. The hexadecimal

number, which must be a string expression, must be between 0 and hexadecimal

value $FFFF, which is equal to decimal 65535. (The dollar sign preceding a

number is used to indicate that the number is hexadecimal but should NOT be

included in the string sent to the DEC function.) The DEC function returns the

unsigned value of the hexadecimal number. To get the 16-bit two's complement,

X, of a hexadecimal number, X$, use

X = DEC(X$)+(DEC(X$)>32767)*65536

Example: PRINT DEC("1E"); DEC("10"); DEC("A")

30 16 10

DEF FN Abbr. dE fn

DEF FN name (variable) = function

Defines a calculation as a function. DEF FN saves time and errors by sparing

you from having to reenter a calculation you will use more than once in a

program. After the function is defined as a formula, you can use it to solve a

specific problem. To do so, call the function and supply the value you want the

formula to solve, with FN name (value).

Parameters: function name (variable) = calculation

1. The function name is any legal variable name. When you want to use the

function later in the program, you give FN followed by the function name.

2. The (variable) is replaced by a value when you call the function you defined.

BASIC Version 3.5 Commands, Functions, and System Variables 31

This replacement is how you use the generic formula you defined in the DEF FN

to solve a specific calculation.

3. The calculation must follow the rules for calculations.

Note: If BASIC RAM is moved by a GRAPHIC command after defining a

function, the function may not be evaluated properly. Enter (and immediately

leave if necessary) the graphic mode before you define the function.

Example: 10 DEP FNX(Y) = I1TT(A * 2 + Y)

15 INPUT A

20 PRINT FNX(35.2); FNX(19.9)

RUN

?5

45 29

DELETE

DELETE line number-line number

Defines the formula for function X.

Calls function X to use its formula

to solve for 35.2 and then for 19.9,

which replace Y in the function

formula.

Abbr. deL

Deletes BASIC program lines. You can issue this command only in immediate

mode, not in a BASIC program.

Parameter: line number(s)

You can delete one line at a time or a group of lines. To delete one line, just

enter the line number after the word DELETE. To delete a group of lines, enter

DELETE, then the first line number, a dash, and the final line number.

You can also delete all the lines from the beginning of the program up to a

certain line by entering DELETE followed by a dash and the last line you want to

delete. To delete all the lines from a certain line to the end of the program, enter

DELETE, the first line you want to delete and a dash.

Examples: DELETE 75

DELETE 150-250

DELETE -90

DELETE 140-

DIM

Deletes line 75.

Deletes lines 150 through (and including) 250.

Deletes all lines up to and including 90.

Deletes line 140 and all following lines to the end of

the program.

Abbr. dl

DIM array name (subscripts), array name (subscripts), etc.

Defines an array, which is also called a matrix. An array is a table of related

values that you can use as a unit or as individual data items. You can refer to any

32 The BASIC Language

element of the array by giving the array variable name and the subscripts in the

array where the element is located.

The DIM command names the array and defines the number of elements in the

array. An array can have one, two, or more dimensions. If you use an array

element without first DIMensioning the array, the computer gives the array the

default number of elements (11).

You cannot change the dimensions of an array after you have DIMensioned it,

or after you have accepted the default dimensions. If you DIM the array after you

have used it, or try to reDIM the array, the program is aborted and the error

message REDIM'D ARRAY is displayed.

The first element in any dimension of an array is numbered 0, not 1. This means

that an array dimensioned as (5,3) is actually 6 by 4. When you figure the number

of elements in an array, add 1 to each dimension, then multiply the results of the

additions. For example, if the array is dimensioned DIM K(2,4), the array

contains (2 + 1) * (4 + 1) =-15 elements.

Parameters: array name (subscripts), array name (subscripts), etc.

The default number of elements is 11 (0-10).

1. The array name is a variable that follows standard variable rules. Arrays

containing text elements must have text-string variable names (e.g., A$). Arrays

containing numeric elements must have a numeric variable name.

2. The subscripts set the number of elements in each dimension of the array.

You can define more than one array in a DIM command. Separate multiple

array dimensions with a comma.

You can use arrays with more than two dimensions by supplying additional

subscripts in the dimension command. For example, to DIMension a four-

dimensional array, you can use DIM A(2,2,3,2).

Examples: 10 DIM G(9) Defines a one-dimensional array with ten

elements.

20 DIM G$(3,5) Defines a two-dimensional text array with 24 ele

ments (3+1 rows times 5+1 columns).

30 DIM H(2,3,4) Defines a three-dimensional array with 60 elements

(2+1 times 3+1 times 4+1).

90 PRINT G$(2,2) Prints the element at row 2, column 2.

100 INPUT A(3) INPUTs a value for element 3 in array A. Since

array A has not been defined in a DIM command,

it is given the default number of elements (11).

DIRECTORY Abbr. diR

DIRECTORY Ddrive, Uunit, file name

Displays the following information about the contents of a disk:

BASIC Version 3.5 Commands, Functions, and System Variables 33

• Names of all files on the disk

• The length of each file in blocks

• How^jnuch storage space remains on the disk

Press CONTROL and S to suspend the display, and any key to resume display.

Hold down 88 to slow the display.

Each 1541 disk can contain up to 664 blocks of information. You should check

to see how many blocks remain free before you COPY files onto a disk. You

should also check before you save a file if you think the disk is nearly full.

Parameters: D drive number, U unit number, "file names or prefixes"

1. Drive numbers are either 0 or 1. No other numbers are allowed. The drive

number must be preceded by D (e.g., DO). You do not need this parameter if you

are using a single drive such as the 1541, or if you are accessing drive 0 of a dual

drive.

2. U unit number is an optional parameter. Use it only if you have more than

one disk drive connected to your computer and you are accessing a device other

than unit 8. You must precede the unit number with U. You can also type ON

before U and the unit number, but ON is not required.

3. You can display a partial disk directory by specifying a file name. It is

especially useful to use wild cards in the file name. For example, after you type

DIRECTORY, add, in quotes, the beginning letters of the file names you want to

list and then the * sign. The * sign stands for all the other letters in the file names

you want to list. The command looks like this: DIRECTORY "beginning

letters*".

You can use the question mark as a wild card to stand for any single character
in a file name.

Note: The drive and unit number parameters and the file name can be speci

fied with a variable or expression in parentheses.

Examples: DIRECTORY Displays the complete list of files on the disk
currently in the disk drive.

DIRECTORY Dl Displays the directory for the disk in drive 1

of a dual drive.

DIRECTORY TJ9, "LET*" Displays a list of files whose names begin

with the characters LET. Other files on the

disk in unit 9 are not listed.

DIRECTORY "TEST?" Displays the files whose names are TEST and

one additional character (e.g., TEST1,

TESTX).

34 The BASIC Language

DLOAD Abbr. dL

DLOAD file name, Ddrive, Uunit

Loads a disk program into memory. You cannot use DLOAD to load pro

grams from tape.

Parameters: "file name", D drive number, U unit number

1. You must include the name of the file. Enter the name in quotes. You can

use a variable name in place of the file name, but the variable must have a value,

and it must be in parentheses (not in quotes). The only time this is likely to be

useful is when you load a program from within another program.

2. Drive numbers are either 0 or 1. No other numbers are allowed. The default

value is 0. You do not need this parameter if you are loading from a single disk

drive.

3. Unit number is an optional parameter. Use it only if you have more than one

disk drive connected to your computer and you are using a device other than unit

8 in the loading procedure. You must precede the unit number with U. You can

also type ON before U and the unit number, but ON is not required.

Note: The drive and unit number parameters and the file name can be speci

fied with a variable or expression in parentheses.

Note: Only program-type files can be DLOADed.

Note: In program mode, a RUN command (with no CLR) is automatically

issued following a DLOAD operation. This makes it possible to chain programs.

Examples: DLOAD "CIRCLES'7 Loads file CIRCLES from disk.

90 DLOAD (X$) Loads a file whose name is the current value of X$.

File X$ is loaded during the execution of the

current program.

DO ... UNTIL/WHILE/EXIT . . . LOOP Abbrs. do/uN/wH.exI/loO

DO UNTIL logical value WHILE logical value

commands

EXIT

commands

LOOP UNTIL logical value WHILE logical value

Repeats execution of the commands between DO and LOOP. The DO loop

cannot stop itself unless you add commands or clauses that set conditions for

terminating the loop. UNTIL, WHILE, and EXIT are optional clauses that can

be included to terminate a DO loop.

UNTIL and WHILE clauses, which control the number of loop executions,

contain conditional formulas that are evaluated each time the loop repeats. EXIT

lets you abort the loop.

BASIC Version 3.5 Commands, Functions, and System Variables

Parameters

35

Required Optional

DO

Commands to be executed by the loop

LOOP

UNTIL conditional formula

WHILE conditional formula

EXIT

UNTIL conditional formula

WHILE conditional formula

Example:

Example:

1. The UNTIL clause usually contains at least one variable that is compared

with a value. The condition of this comparison is checked each time the DO loop

executes. The loop continues repeating until the condition(s) is (are) met. Pro

gram control then passes to the command after the LOOP command.

You can set multiple conditions by linking them with AND or OR (e.g.,

UNTIL X = 5 OR Y > 10).

SO DO UNTIL X = 10

30 PRINT X

40 X = X + 2

50 LOOP

This DO loop executes until X equals 10. When

this condition is met, the loop ends.

2. The WHILE clause usually contains at least one variable that is compared

with a value. The condition of this comparison is checked each time the DO loop

executes. The loop continues repeating while the condition(s) is (are) met. Pro

gram control then passes to the command after the LOOP command.

You can set multiple conditions by linking them with AND or OR (e.g.,

WHILE X = 5 OR Y > 10).

20 DO WHILE X< 10

30 PRHSTT X

40 X = X + 2

50 LOOP

This DO loop executes until X is greater than or

equal to 10. When this condition occurs, the loop

ends.

Notes: The difference between UNTIL and WHILE is that UNTIL conditions

start off not being met; the loop continues until they are. WHILE conditions start

off being met; the loop continues until they are not met.

The conditions in UNTIL and WHILE commands are always either true (met)

or false (not met). If you use more than one condition, join them with AND or

OR. If you use AND, both conditions must be met; if you use OR, only one

condition has to be met.

Both DO and LOOP can have UNTIL conditions or WHILE conditions, but
not both.

36 The BASIC Language

You can have a conditional clause (WHILE or UNTIL) in both the DO and

LOOP commands in one loop.

If you omit both UNTIL and WHILE clauses in the DO loop, the loop is an

infinite loop: it continues executing without stopping. You must interrupt the

program with the STOP key to terminate the loop.

3. EXIT lets you leave the loop before the UNTIL or WHILE conditions end

the loop. You can, for example, use EXIT to check for unwanted values and end a

loop if a particular value is encountered. After an EXIT command, program

execution passes to the line following the LOOP command.

Note: Always use EXIT (never GOTO) to leave a loop prematurely.

Example: 5 DATA YES, NO, YES, NO, END Lists DATA values.

10 DO WHILE X < 50 Begins a loop that runs as long as

X is less than 50.

SO X = X + 1 Increments the counter for the

WHILE clause.

30 READ ANSI Reads data from line 5.

40 IF ANSI = "END" THEN EXIT Aborts the loop if ANS$ = END.

50 LOOP Sends the loop back to DO.

NEW Clears the previous program.

10 D0:PRINT "HALT!" Begins a DO loop.

SO X = X + 1 Adds 1 to X each time the loop

executes.

30 IF X = 25 THEN EXIT Aborts the loop when X = 25.

40 LOOP Sends the loop back to DO.

4. LOOP works with DO to set conditions for a repeated sequence of program

lines. LOOP works for DO as NEXT does for FOR: it marks the end of the loop

and sends execution back to the beginning of the loop.

If you do not include an UNTIL or WHILE clause with the DO command, you

can add one here. The UNTIL and WHILE commands can appear with either the

DO command or the LOOP command, or both.

DRAW Abbr.dR

DRAW color source, coordinates TO coordinates TO coordinates etc.

Draws dots, lines, and any angled shape. DRAW can be used only in one ofthe

graphic modes. Though you can draw any polygon with DRAW, it is sometimes

simpler to use CIRCLE to draw polygons with regular-length sides. See Chapter

4 for more information on DRAW coordinates.

BASIC Version 3.5 Commands, Functions, and System Variables 37

Parameter

Color source

Coordinates

Column coordinate

High-res modes

Multicolor modes

Row coordinate

TO coordinates

Column coordinate

High-res modes

Multicolor modes

Row coordinate

TO column, row, etc.

r— —"■—"—? — —

Values

0-3

0-319

0-159

0-199

0-319

0-159

0-199

Default

1

Pixel cursor

1. The color source indirectly selects the color for the drawing. There are five

color sources, but color source 4 (the border color) cannot be used in drawing

commands. Color sources 2 and 3 can be used only in multicolor modes.

0 screen background color

1 foreground color

2 multicolor mode extra color 1

3 multicolor mode extra color 2

The color-source number you include in the DRAW command tells the com

puter to draw in the current color for that source. For example, if you select 1, the

computer draws the shape in the current foreground color. If you want to use a

color other than one of the current source values, you must first use the COLOR

command to change one of the source values. Only sources 1 and 2 can be used to

draw with more than one color on the same screen. Sources 0 and 3 are global

(whole screen) colors.

If you want to use the default value (1, the current foreground color), you do

not have to type a number, but you must type a comma before the next parameter.

2. The first coordinates name the starting point of the drawing. Ifyou omit this

parameter, the current location of the pixel cursor is used as the starting point. If

you omit the first coordinates, no placeholder comma is required.

3. TO is a required part of the DRAW command unless you arejust drawing a

dot.

4. The second and subsequent coordinates name the ending points of the line

segments. You can add more than one TO clause to draw complex designs. If you

38 The BASIC Language

do, the ending point of the first line segment becomes the starting point of the

next line segment, etc.

Examples: 5 GRAPHIC 1,1

10 DRAW, 30,25 TO 289,150 Draws a line from column 30,

row 25 to column 289, row 150.

20 DRAW, 160,25 TO 310,50 TO Draws a four-sided open shape.

240,100 TO 160,100 TO 80,50

30 DRAW TO 319,50 Draws a line from the current

pixel-cursor location to column

319, row 50.

DS Abbr. none

You can PRINT DS to display a reading of the disk drive error number, or you

can examine DS in a program when you need to know the drive status. Use DS

with DS$ to find out why the red error light on the disk drive is blinking after a

disk operation such as DLOAD. If no error occurred, DS is zero.

DS$ Abbr. none

You can print DS$ to display a message explaining the drive status. Use DS$

with DS to find out why the red error light on the disk drive is blinking after a disk

operation such as DLOAD. The error messages are listed in Appendix A.

DSAVE Abbr. dS

DSAVE file name, Ddrive, Uunit

Stores the current program onto a disk. You cannot use DSAVE to store

programs onto cassette tape.

Parameters: "file name", D drive number, U unit number

1. You must include the name of the file. Enter the name in quotes. You can

use a variable name in place of the file name, but the variable must have a value,

and it must be in parentheses (not in quotes).

2. Drive numbers are either 0 or 1. No other numbers are allowed. The default

value is 0. You do not need this parameter if you are storing onto a single disk

drive.

3. Unit number is an optional parameter. Use it only if you have more than one

disk drive connected to your computer and you are using a device other than unit

8 in the loading procedure. You must precede the unit number with U. You can

also type ON before U and the unit number, but ON is not required.

Note: The drive and unit number parameters and the file name can be speci

fied with a variable or expression in parentheses.

Examples:

Example:

BASIC Version 3.5 Commands, Functions, and System Variables 39

DSAVE "BOXES"

90 DSAVE (A$),U9

EL

Stores the program BOXES onto the disk.

Stores a file onto the disk in drive unit 9. The

name of the file is the current value of A$. The

program is saved during execution.

Abbr. none

Determines the line number of the last BASIC error that occurred in a

program. Use PRINT EL to display the line number. The reserved variable EL is

often used in conjunction with the TRAP command, which isolates errors

without interrupting program execution.

ELSE Abbr. eL

An optional clause you can add to an IF .

IF ... THEN . . . ELSE.

. THEN ... ELSE command. See

END Abbr. eN

Ends a program with no message. You need to end a program with the END

command when subroutines or trap routines follow the body of the program.

You can also use END somewhere in the body of the program to terminate the

program if some condition is met.

50 IP A$="ST0P" THEN END Ends the program if A$ equals STOP.

ER Abbr. none

Determines the error number of the last BASIC error that occurred in a

program. Use PRINT ER to display the error number. The reserved variable ER

is often used in conjunction with the TRAP command, which isolates errors

without interrupting program execution. The BASIC errors are listed in Appen

dix A.

ERRS

ERRS (number)

Abbr. eR

Returns the error message describing the BASIC error number in parentheses.

The function ERRS is often used in conjunction with the TRAP command, which

isolates errors without interrupting program execution. To display the error

message for the most recent error in the program, type PRINT ERR$(ER).

Parameter: a numeric expression with value 1-36

The BASIC error messages are listed in Appendix A.

40 The BASIC Language

EXIT Abbr. exl

Terminates a DO ... LOOP conditional command sequence. You cannot use

EXIT with other commands, including IF ... THEN ... ELSE sequences. See

DO.

EXP Abbr. eX

EXP (number)

Numeric function that finds the value ofthe mathematical constant e (approx

imately 2.71828183) raised to the power in parentheses. To find exponentials of

other numbers, use the up arrow symbol.

Parameter: any numeric expression

Example: PRINT EXP(-1) Displays the reciprocal of e.

.367879441

FOR ... TO ... STEP ... NEXT Abbrs. fO/to/stE/nE

FOR variable = start value TO end value STEP increment

commands

NEXT variable, variable, etc.

Creates a loop to repeatedly execute all commands between the FOR com

mand and the NEXT command. The loop repeats until the counter variable in the

FOR command equals or exceeds the value of the ending point.

If you omit the optional STEP command, the FOR counter is incremented by 1

each time the loop executes. You can use STEP to increment the counter by any

number. For example, you can use a STEP increment of 25 to draw a shape

repeatedly, each time tilted 25 degrees more. You can also use STEP to count

backwards by specifying a negative number.

Parameters: FOR counter variable = starting point TO ending point STEP increment

commands

NEXT counter variable

1. The FOR command contains a variable whose value is updated each time

the loop is executed.

The FOR command also contains the starting and ending points for the

number of times the loop will execute. The starting and ending points can have

any value, including variables. If the starting point is higher than the ending

point, you normally include a negative STEP value.

2. The STEP clause, which is optional, tells the computer how much to add to

the current value of the counter each time the NEXT command sends execution

back to the FOR command. The default value is 1.

BASIC Version 3.5 Commands, Functions, and System Variables 41

A negative STEP value decreases the value of the counter variable each time

the loop is executed. (Remember that adding a negative value is like subtracting.)

3. The commands that are to be repeated during loop execution appear

between the FOR command and the NEXT command.

4. The NEXT command tells the computer to go back to the FOR command.

When the FOR command is reached again, the STEP value is added to the value

of the counter. When the counter passes the ending point, the loop terminates.

Never leave a FOR . . . NEXT loop with a GOTO. You can always leave when

NEXT is executed by setting the loop variable equal to its ending point.

Note: A FOR... NEXT loop is always executed once. The counter variable is

updated before leaving the loop.

The NEXT command can contain the FOR counter variable, but it is not

required. If you are nesting loops, use the counter variable in the NEXT com

mands to avoid errors. The NEXT command can also contain a number of

counter variables for nested loops. The variables must be listed starting with the

innermost loop variable and ending with the outermost loop variable, therefore,

nesting rules are followed.

NestingMultipleFOR... NEXTLoops You can nest up to 10 FOR... NEXT

loops. Note the following when you nest loops:

• The inner loop becomes part of the outer loop.

• The inner loop must start and end between the beginning and ending of the

outer loop.

• The inner loop executes a full cycle from starting to ending points each time the

outer loop executes once.

Chapter 3 contains more information on using loops in BASIC programs.

Examples: 10 FOR X = 10 TO 50 STEP 15

SO PRINT "X ="; X

30 NEXT

40 PRINT "AT THE END OP THE LOOP, X =";X

RUN

X= 10

AT THE END OF THE LOOP, X = 55

NEW

42 The BASIC Language

10 F0RY = 1T0 3

SO FOR Z = 6 TO 1 STEP -2

30 PRINT "Z =";Z;

40 PRINT "Y ="; Y

50 NEXT Z: NEXT Y This line could also read NEXT Z,Y.

RUN

Z = 6 Y = 1 While Y, which is part of the outer loop, executes

Z = 4 Y = 1 once, Z5 from the inner loop, executes all three times.

Z = 2 Y = 1 When Y makes its second execution, Z repeats

Z = 6 Y = 2 another full set, and so on.

Z=4 Y=2

Z=2 Y=2

Z=6 Y=3

Z=4 Y=3

Z=2 Y=3

FRE Abbr. fR

FRE (number)

Examines the number of available bytes of RAM. Use PRINT FRE(O) to

display the amount of memory available. The FRE function uses a dummy

argument, which means that the number in parentheses is meaningless. You have

to include the parameter anyway; just type FRE(O).

GET Abbr. gE

GET input list

Like INPUT, GET accepts input from the keyboard during program execu

tion. GET, however, accepts only a single character at a time as data entry. In

addition, GET does not wait for input, but returns a null (empty) string if no key

is pressed. This allows you to check repeatedly for keyboard entry while other

operations continue. To force the computer to wait for input, use the GETKEY

command.

Parameter: variable(s)

The variable is nearly always a string variable. It stands for the key to be typed

in response to the GET command. Use of a numeric variable allows only the 0

through 9 keys to be entered. Any other key causes a type mismatch error, which

aborts the program unless TRAPped.

Example: 10 PRINT "PRESS A KEY TO STOP ME" Prints message to the screen.

SO GET A$:IP A$="" THEN 10 If no key is pressed, then go

to 10.

30 PRINT "WHAT A RELIEF" Program continues normally.

BASIC Version 3.5 Commands, Functions, and System Variables 43

GETKEY abbr. gEkE

GETKEY input list

Like INPUT, GETKEY accepts input from the keyboard during program

execution. GETKEY, however, accepts only a single key at a time as data entry.

Unlike GET, GETKEY waits for input.

Parameter: variable(s)

The variable is nearly always a string variable. It stands for the key to be typed

in response to the GETKEY command. Use of a numeric variable allows only the

0 through 9 keys to be entered. Any other key causes a type mismatch error, which

aborts the program unless TRAPped.

Example: 10 ? "PRESS THE CURSOR KEY TO ANSWER"

SO ? "MY GROUP IS: <- RED OR BLUE ->"

30 GETKEYA$

40 IF A$ = CHR$(157) THEN ? "RED GROUP,

DO ODD-NUMBERED EXERCISES"

50 IF A$ = CHR$(29) THEN ? "BLUE GROUP,

DO EVEN-NUMBERED EXERCISES"

GET#

GET# file number, input list

Waits for you to

press a key; the key's

value is assigned

to A$.

Checks key entered.

CHR$(157) is cursor-

left key code.

Check key entered.

CHR$(29) is cursor-

right key code.

Abbr. gE#

Retrieves data one character at a time from an OPENed device or file. GET#

works like a GET command except that the GET command gets a character from

the keyboard, while the GET# command gets a character from a device or a file.

GET# works like INPUT# except that INPUT# gets a whole group of characters

from the file, while GET# gets only one character at a time.

Parameters: file number, variable(s)

1. The file number is a logical file number that links the file or device to other

commands, including the OPEN command that accesses the device or file before

it can be used.

2. The variable is nearly always a string variable. Use of numeric variables

allows only values from ASC("0") (48) to ASC("9") (57) to be read. Anything else

causes a type mismatch error, which aborts the program unless TRAPped.

44 The BASIC Language

Example: 10 OPEN

SO DO UIITIL STOO

30 GET#8 ,K$

40 IF(ASC(K$)AND137>31 THEN PRINT K$

50 LOOP

Opens communica

tion to the disk

directory file.

Repeats a loop until

the status byte indi

cates an end-of-file

or an error.

Assigns one character

from the disk file

toK$.

Prints noncontrol

characters.

60 CLOSE 8 Closes disk file.

GOSUB line number

Branches the program to a subroutine, which is a group of program lines that

performs a reusable task. You can reuse a subroutine as often as you like just by

calling it with the GOSUB command. Subroutines are particularly useful in

programs that repeat a task.

Subroutines can appear anywhere in the program. They are ended by the

RETURN command, which sends program control back to the main body of the

program. Do not exit subroutines with a GOTO command. The program con

tinues at the line following the GOSUB command.

Parameter: starting line number for subroutine

Example: 10 INPUT "WHAT SHAPE DO YOU WANT TO DRAW"; S$

20 INPUT "DO YOU WANT THE SHAPE TO BE RED, BLUE, OR GREEN"; C$

30 IF S$ <> "CIRCLE" THEN INPUT "HOW MANY SIDES DOES THE SHAPE HAVE"; X

35 IF S$ = "CIRCLE" THEN X = 180

37 IF X = 0 THEN PRINT "ZERO IS NOT ALLOWED. REENTER":GOTO 30

40 GOSUB 80

45 REM AFTER SUBROUTINE, PROGRAM RESUMES AT LINE 50

50 INPUT "WANT TO DRAW ANOTHER SHAPE"; A$

60 IF LEFT$(A$,1) = "N" THEN END: ELSE GOTO 10

70 REM BEGIN SUBROUTINE TO DRAW SHAPE

80 GRAPHIC 1,1

85 REM USE INPUT FROM LINE 20 TO SET COLOR IN LINE 110

90 IF LEFTS(C$,1) = "R" THEN C = 3: GOTO 110

100 IF LEFT$(C$,1) = "B" THEN C = 7: ELSE C = 6

110 COLOR 1,C,3

105 REM USE INPUT FROM LINE 30 TO FIGURE NUMBER OF SIDES OF SHAPE

120 CIRCLE, 160,100,60,50,,,,360/X

BASIC Version 3.S Commands, Functions, and System Variables 48

130 PAINT, 160,100

140 CHAR,2,2, "YOU HAVE DRAWN A "+S$

145 REM USE D£LAY LOOP TO PROLONG SHAPE DISPLAY

150 FOR Y = 1 TO 300: NEXT Y

155 REM SWITCH BACK TO TEXT MODE

160 GRAPHIC 0,1

165 REM END OF SUBROUTINE

170 RETURN

GOTO or GO TO

GOTO line number

Abbr. gO

Tells the computer to branch to another line and continue execution there. You

can also use GOTO in immediate mode to jump into a program and begin

executing it. The difference between executing a program with a RUN command

and an immediate mode GOTO is that the RUN command clears all variables
before executing the program, and GOTO does not.

Parameter: line number

GOTO can send execution to a later or earlier line in the program. When

GOTO sends the program back to a previously executed line, an infinite loop

results unless you also include a statement or mechanism such as a counter to end
the loop.

Examples: 10 INPTJT"WHAT'S YOUR NAME"; N$

20 GOTO 10

NEW

10 INPUT "WANT TO REPEAT"; N$

SO IP LEFT$(N$,1) = "N" THEN END

30 GOTO 10

GRAPHIC

GRAPHIC mode, clear

GRAPHICCLR

GOTO sends the program

back to line 10 each time line

20 is executed; this causes an

infinite loop.

GOTO sends the program

back to line 10 unless you

answer N to the INPUT ques

tion. Typing N ends the loop.

Abbr. gR

Switches to one of the four graphic drawing modes, or from a graphic drawing

mode to the text modes. You can also clear the screen or the bit-mapped memory

area that is set aside for graphics when you enter one of the graphic drawing

modes.

46 The BASIC Language

Parameter Values Default

Mode 0-4 No default

Clear screen option 0 or 1 0

CLR command option CLR No default

1. You can use the GRAPHIC command to switch to any of these modes:

0 text mode

1 high-resolution mode

2 split-screen high-resolution mode

3 multicolor mode

4 split-screen multicolor mode

GRAPHIC 0 switches from a drawing mode to text/graphic mode, in which

letters are uppercase and you can print all the graphic symbols on the fronts of the

keys. If you want to switch to the alternate text mode, in which letters can be both

lowercase and uppercase and in which you can print only the left-side graphic-key

symbols, first switch to text/graphic mode, and then press the SHIFT and K8

keys together or PRINT CHR$(14).

2. If you want to include a screen-clearing option with the mode choice, add a

comma and 1 after the mode number. If you do not add this option, the computer

switches back to whatever was on the screen the last time it was used in the current

computing session.

3. The GRAPHIC command can also release the 12K area devoted to graphic

modes. The first time you access any one of the graphic drawing modes, a 12K

area is set aside for the^graphics screen and your BASIC program is moved above

it. When you return to a text mode, this area remains set aside for graphic mode

use unless you tell the computer to release it. Just issue a GRAPHIC CLR

command to regain use of this 12K of memory.

Note: If you define a function with DEF FN before you execute a GRAPHIC

command, the function subsequently may not execute properly (when FN is

used). In other words, the function definition is not moved properly. Care must

be taken when defining functions and using graphics in a single program.

Note: A graphics screen actually requires only 10K bytes of memory. The

amount removed from BASIC RAM is 12K because the screen must be located

on 8K boundaries. The screen is located from $2000 to $3FFF; its color/lumi

nance memories are located from $ 1800 to $ 1FFF. This leaves the 2K from $ 1000

to $17FF unused, but unavailable for BASIC.

BASIC Version 3.5 Commands, Functions, and System Variables 47

Examples: GRAPHIC 0,1 Switches from a graphic mode to the text modes. The

last text screen is cleared.

GRAPHIC CLR Releases the 12K bit-mapped graphic area.

GRAPHIC 2,1 Switches to split-screen high-resolution mode and clears

the graphic screen.

GRAPHIC 3 Switches to full-screen multicolor mode without clearing

the graphic mode screen.

GSHAPE Abbr. gS

GSHAPE string variable, coordinates, mode

GSHAPE (GetSHAPE), which is the opposite of the SSHAPE (SaveSHAPE)

command, retrieves and displays a graphic screen area saved by an SSHAPE

command. You can use SSHAPE and GSHAPE in any graphic mode to store

and retrieve a rectangular section of the screen that is up to 255 text-sized

characters long.

These graphic screen areas are saved as text-string values in memory. You use a

text-string variable to identify the screen area, just as you use a variable to

identify any type of value.

After you save a screen area with SSHAPE, you can display it anywhere on the

graphic screen. When you retrieve the area in the GSHAPE command, you give

the screen location where you want the area to be displayed.

Parameters: string variable, top corner coordinate, display mode

1. The string variable is the name assigned to the graphic screen area saved

with the SSHAPE command. Retrieve the area by using the same string-variable

name used in the SSHAPE command.

2. Display a copy of the saved graphic screen area anywhere on the screen by

giving the coordinates of the top left corner of the screen area where you want the

drawing to appear.

3. When you retrieve the saved area, you can choose one ofthe five options for

displaying it.

0 display duplicate of saved area (default)

1 display saved area in reversed colors

2 OR saved area with current area

3 AND saved area with current area

4 XOR saved area with current area

Option 0, which is the default value for this parameter, draws the area as you

saved it.

48 The BASIC Language

Option 1 inverts the color values, so the shape is drawn as a reversed image of

the saved area.

Option 2 overlays the shape on the existing screen pattern.

Option 3 displays only that part of the shape that covers an existing screen

pattern.

Option 4 inverts the part of the existing screen pattern covered by the shape.

Chapter 4 further explains the GSHAPE and SSHAPE commands.

HEADER Abbr. heA

HEADER disk name, Idisk id, Ddrive, ON Uunit

Before you can store information on a new, blank disk, you must prepare the

disk by formatting it. Formatting, also called headering, puts the blank disk into

the format required by your disk drive. The disk is divided into blocks and a

directory for the disk is prepared. Headering is necessary because blank disks are

manufactured to be used in any brand of disk drive, and you need to format the

disk so that it is compatible with your disk drive.

You MUST header a new disk before you can save files on it, but use the

HEADER command with great care because headering completely and perma

nently erases any files already on the disk. You can header a used disk if you are

willing to erase its current contents.

Parameters: "disk name", lid code, D drive number, U unit number

1. The disk name (in quotes) can be up to 16 characters long.

2. Give the disk a unique two-character code. Use two characters for an id

code, not just one. Type an I before the id code.

3. Drive numbers are either 0 or 1. The order of the id code and drive number

parameters can be reversed.

4. Unit number is an optional parameter. Use it only ifyou have more than one

disk drive connected to your computer and you are using a device other than unit

8 in the header procedure. You must precede the unit number with U, and the unit

number must be between 8 and 11. You can type ON before U, but ON is not

required.

Are You Sure?

When you issue a HEADER command and press RETURN in immediate mode,

the command is not executed immediately. First, the computer displays the

question ARE YOU SURE? This question gives you a chance to make sure the

disk does not contain information you want to keep.

To proceed with the headering procedure, type Y or YES and press RETURN.

To abort the header, just press RETURN. In program mode, the question is not

asked.

BASIC Version 3.5 Commands, Functions, and System Variables 49

Partial Headering

You can also clear a disk directory on an old disk without formatting the disk.

This procedure, which gives you an empty disk with the old id, is called a partial

header. Omit the id code from the HEADER command to do a partial header.

Note: The drive and unit number parameters and the disk name can be

specified with a variable or expression in parentheses.

Examples: HEADER "CIRCLES",D0,IG3

HEADER 'a:KrSIJRANCE//,Dl,IP5

HEADER "HOUSEFILES",DO Performs a partial header.

HELP Abbr. heL

Highlights an erroneous command in a BASIC program by putting the com

mand in flashing mode. If you want to highlight the error in a line, use HELP

after the computer displays an error message when you execute a program. The

HELP function key is defined with this BASIC command.

HEX$ Abbr. hE

HEX$ (number)

Gets the hexadecimal value for the decimal number in parentheses as a four-

character text string. The value of the number in parentheses must be between 0

and 65535 inclusive. Since the hexadecimal value is always printed as a four-

character string, zeros are placed at the beginning ofvalues that are less than four

characters long.

Note: The HEX$ function accepts only nonnegative input. To use 16-bit two's

complement input, use

X$ = HEX$(X-(X<0)*65536)

Example: PRINT HEX$(45), HEX$(S001)

002D 07D1

IF ... GOTO ... ELSE Abbrs. if/gO/eL

IF logical value GOTO line number : ELSE commands

Branches the program based on the value of a conditional clause. IF is a

compound conditional statement that checks the status of a condition in the

command and then chooses one of two courses of action.

One of the two IF command options is stated in the GOTO clause, which is

executed when the IF condition is true. When the IF condition is false, the GOTO

50 The BASIC Language

clause is ignored and execution passes to the next line in the program or to the

ELSE clause if one is present.

The GOTO clause is like a GOTO command: it tells the computer to go straight

to a specified line number and resume execution there. The line number can be

anywhere in the program.

IF ... GOTO ... ELSE is a limited variation of IF ... THEN ... ELSE. Use

IF... GOTO... ELSE instead of IF... THEN... ELSE when the THEN clause

would contain a GOTO command anyway.

Parameters: true-false condition GOTO line number : ELSE clause

1. The conditions in the IF command can use comparison operators (=, <, >,

<>, <=, >=) to compare values. The values can be any of the following:

• Numbers or text strings

• Any type of variable

• Variables on both sides of the comparison operator

• Mathematical formulas

2. The line number after GOTO tells the computer where to go when the IF

condition(s) is (are) true.

3. The ELSE clause contains instructions that are followed only when the IF

condition(s) is (are) false. The ELSE clause is always optional. It must be

separated from the rest of the command by a colon.

Example: 10 IITRJT X Line 20 compares the value input for X to 0.

SO IF X <= 0 GOTO 10 The GOTO command executes only when it is

30 PRINT X true that X is less than or equals 0.

IF ... THEN ... ELSE Abbrs. if/tH/eL

IF logical value THEN commands : ELSE commands

IF is a compound conditional statement that checks the status of a condition in

the command and then chooses one of two courses of action.

One of the two IF command options is stated in the THEN clause. The other

option can be stated in an ELSE clause. If no ELSE clause is present, execution

continues with the next line in the program when the condition is false.

The status of the IF command condition determines whether the THEN clause

or the alternative is to be executed. THEN is executed when the IF condition is

true, or met; ELSE is executed when the IF condition is false, or not met. The

computer executes either the THEN clause or the ELSE clause, but never both.

BASIC Version 3.5 Commands, Functions, and System Variables 81

Parameters: true-false condition THEN clause : ELSE clause

1. The conditions in the IF command can use comparison operators (=, <, >,

<>, <=, or >=) to compare values. The values can be any of the following:

• Numbers or text strings

• Any type of variable

• Variables on both sides of the comparison operator

• Mathematical formulas

2. The THEN clause contains commands that are executed only when the IF

command condition(s) is (are) true. The THEN clause, which is always a required

part of the IF command, can contain any legal commands. (If the THEN clause

contains more than one command, they must be separated by colons.) The THEN

clause must be typed on the same line as IF with no punctuation separating it

from the keyword THEN. If the THEN clause is a GOTO, the keyword GOTO

can be omitted.

Example: 50 IF X$ = "HALT" THEN END The program ends when X$ does

equal HALT. The THEN clause is

not executed otherwise.

3. The ELSE clause contains a command that is executed only when the IF

condition(s) is (are) false. The ELSE clause can contain any legal command. If the

ELSE clause is a GOTO, the keyword GOTO can be omitted. The ELSE clause is

always optional, but the THEN clause is always required, so an IF command

cannot have an ELSE clause but no THEN clause.

ELSE must be separated from the THEN clause by a colon. ELSE is a clause,

not an independent command; type THEN and ELSE clauses on the same lines as

the IF command.

Note: IF commands can be "nested," but their ELSE commands will not be.

When an IF condition is found to be false, the next ELSE clause on the line is

always executed.

Examples: 30 IF A = B THEM" PRINT

"EQUALITY": ELSE GOTO 100

40 IF A = 0 THEN IF B = 0

THEN PRINT "BOTH 0":ELSE

PRINT "ONE NONZERO"

When A equals B, the THEN

clause executes and the ELSE

clause does not. When the condi

tion is false, the THEN clause

does not execute, and the ELSE

clause does.

Prints BOTH 0 if A and B are

zero. Prints ONE NONZERO if

either is not zero.

58 The BASIC Language

INPUT Abbr. none

INPUT string; input list

Accepts your input from the keyboard during program execution. The pro

gram waits for you to type the input and press the RETURN key before it

continues. You can add a question to the INPUT command to help the user

understand the type of input expected.

Parameters: "prompt question"; variable(s)

1. The prompt question, which is optional, must be in quotes. If you omit the

prompt, do not put the semicolon before the variable.

Do not type a question mark at the end of the question. Whether or not you

include a prompt question, INPUT displays a question mark to indicate that

keyboard input is expected. If you add the prompt question, the automatic

question mark is displayed at the end of the question.

Note: If you do not want a question mark to be displayed for keyboard input,

OPEN the keyboard (device number 0) as a file. Then, PRINT your prompt

(ending with a semicolon) and use INPUT# to read the keyboard.

2. The data values you input from the keyboard are assigned to the INPUT

variable.. Use text-string variables for text input. You can use more than one

variable in an INPUT command. If you do, separate the variables with commas;

the semicolon is used only to separate the prompt question (if there is one) from

the variables. If you use more than one variable, you must enter a value for each

(separated by commas) before the program can continue. Otherwise, a double

question mark will prompt for the rest of the input.

Example: 10 INPUT "WHAT'S THE DESTINATION"; D$

SO PRINT "PACKAGE TO ";D$

RUN

WHAT'S THE DESTINATION? LONDON

PACKAGE TO LONDON

INPUT# Abbr. iN

INPUT# file number, input list

Retrieves a data value from an OPEN file or device and assigns it to variables.

INPUT# works like INPUT, but instead of getting data input from the keyboard,

INPUT# gets data from a file or device. The file or device must have been opened

using the same logical file number. See also GET#.

BASIC Version 3.5 Commands, Functions, and System Variables 53

Parameters: file number, variable(s)

1. The file number is a logical file number that identifies the file or device and

links it to other commands. The file or device must have been previously accessed

by an OPEN command with the same logical file number.

2. The variable type must match the type of value to be assigned (e.g., if you

are assigning text values, you must use text-string variables). If the' INPUT#

command contains more than one variable, separate the variables with commas.

Example: 10 OPEN 8,8,15 Accesses the disk drive error channel.

20 INPUT#8, U, E$, T, S Gets three numeric and one text-string values

from the channel and assigns them to N, E$,

T, and S.

30 PRI1TT M", E$, T, S Prints the values on the screen.

40 CLOSE 8 Closes the disk channel.

INSTR Abbr. inS

INSTR (master string, substring, start position)

You can find the position of a text string within another text string by using the

INSTR function. INSTR returns a number that represents the character position

in the master string where the sought string begins. If the sought string is not

present, a value of 0 is returned.

The INSTR function has an optional parameter that lets you begin the text-

string search at any character location in the master string. Use this option if you

have found one instance of the sought string and want to search for additional

appearances of the sought string or if you want to begin the search after some

known occurrence of the sought string. This option is the only way to find

additional instances of the sought string.

Parameters: master string, sought string, starting position

1. The master string is the text string being searched. It can be any text string

enclosed in quotes. You can also use a text-string variable or string expression as

this parameter. Only text-string values are allowed.

Note that blanks and punctuation marks are counted as character positions.

2. The sought string is the text for which you are searching the master string.

The sought string can be any text string enclosed in quotes. You can also use a

text-string variable or string expression as this parameter. Only text-string values

are allowed in the INSTR function.

3. The starting position, which is optional, is a number representing the

character position in the master string where you want to begin the search. The

default is the first position in the master string. Once you have found one instance

of the sought string, you can search for another by issuing another INSTR

command using the location of the found string + 1 as the starting position.

54 The BASIC Language

Examples: 10 A$ = "THE LAST STRAW"

20 PRINT INSTR(A$, "ST")

RUN

7

PRINT INSTR(A$, "ST",8)

10

INT

INT (number)

The sought string is found starting at

character position 7.

Using 7 + 1 as the starting location,

another instance of the sought string is

found at character position 10.

Abbr. none

Truncates a number with decimal parts into a whole integer number. The INT

function simply ignores the decimal parts of the number; INT does not round the

number. This means that the result is always less than or equal to the original

number. For example, INT(9.9) is 9, not 10.

When the number is negative, the result is also always less than or equal to the

number. In the case of negative numbers with a decimal value greater than .0, INT

returns the next lowest integer. For example, INT(-5.1) is -6.

The INT function is often used with the RND (random number) function to

generate random whole numbers. See the RND function.

Parameter: number in parentheses

The number can be any number, positive or negative. You can also use a

calculation or variable as the number.

Note: To round off a number, X, use INT (X+.5)

Examples: PRINT INT(-5.0)

-5

PRINT INT(2.2*3)

6

JOY

JOY (port number)

Abbr.jO

Finds the status of either joystick. Use JOY(l) to examine the status of the

joystick injoy port 1; use JOY(2) to examine the status of the joystick in joy port

2.

The JOY function reads nine differentjoystick positions, which are numbered

0 through 8. Nine additional readings, numbered 128 through 136, are displayed

when the fire button is also being pressed. The readings are shown in Table 1-5.

BASIC Version 3.5 Commands, Functions, and System Variables 55

Table 1-5. Joystick readings

Left Left Right Right

& up Left & down Down & down Right &up Up Middle

No fire

button 876 54 3210

With fire

button 136 135 134 133 132 131 130 129 128

Examples: PRINT JOY(l)

4 Joystick 1 is positioned down and to the right. The fire

button is not being pressed.

PRHSTTJOY(S)

134 Joystick 2 is positioned down and to the left. The fire

button is being pressed.

KEY Abbr. kE

KEY number, definition

Defines a function key and can also display an up-to-date list of the function

key definitions.

Display a list of each function key definition by typing the command KEY and

pressing the RETURN key. Do not add any parameters.

Redefine a function key by supplying values for the following parameters:

Parameters: key number, definition

1. Type the key number of the key you are redefining. You must follow it with

a comma. If you are just displaying a list of key definitions, omit this parameter.

2. Type the key definition as a text string. You can use BASIC functions and

any non-BASIC word in quotes. For a compound definition, join the strings with

plus signs (+).

Put the command in quotes. Add +CHR$(13) if you want an automatic

RETURN at the end of the definition. Add +CHR$(34) if you want to use

quotation marks.

Examples: KEY Lists the current key definitions.

KEY S/'GRAPHIC 2,1"+CHR$(13) Defines key 2 to execute a GRA

PHIC 2,1 command.

KEY 3//IHPUT//+CHR$(34) Defines key 3 to display INPUT"

on the screen.

56 The BASIC Language

Defining a Function Key for Program Input

The function key definition procedure can also be used in a program. INPUT can

be used to accept function key definitions. Of course, the input must end with a

RETURN character from the definition or the keyboard. GETKEY receives only

the first letter of the definition. Also, if GETKEY is called a second time following

the receipt of a multiple character function key definition, an error results.

To be able to use a function key in a GETKEY command, you must first

redefine the key as a single CHR$ code. This definition allows BASIC to consider

the function key as a single key not a string of characters. Once the key is defined

as a single key, you can press the key as input for a GETKEY command. Then you

can use an IF command to see if the key pressed equals the CHR$ code for the

function key and use a THEN clause to perform the desired operation(s). The

following example redefines function keys 1 and 2 as CHR$ codes 133 and 137

(these are the CHR$ codes used for the function keys on the Commodore 64).

Note that redefinitions written in a program are still in effect when the program

ends. To restore the original definitions, press the reset button.

Examples: 5 REM DEFINE KEYS 1 AND 2 AS CHR$ CODES 133 and 134

10 KEY1,CHR$(133): KEY2,CHR$(134)

20 GETKEYZl: REM PRESS Fl OR F2

25 REM USE ASC TO CHECK THE CHR$ CODE FOR THE PRESSED

KEY

30 IFASC(Z$>133 THEN PRINT"DRAWA CIRCLE":X=1

40 IFASC(Z$>134 THEN PRINT"DRAWA DIAMOND":X=360/4

50 GRAPHIC1,1

60 CIRCLE,160,100,60,50,,,,X

In this example keys 1 and 2 are redefined to be YES and NO and can be used as

input in line 40.

10 REM DEFINE KEYS 1 AND 2 AS YES AND NO

20 KEY1,"YES"+CHR$(13)

30 KEY2,//N0//+CHR$(13)

40 INPUT "WANT TO SEE THE KEY DEFINITIONS";A$

50 IF A$ = "YES" THEN KEY

60 IF A$ = "NO" THEN PRINT "OKAY"

LEFTS Abbr. leF

LEFTS (string,length)

Truncates the string in parentheses to the specified length. LEFTS is used

frequently to check input, particularly to check just the first letter of the input.

BASIC Version 3.S Commands, Functions, and System Variables

Parameters: string being truncated, number of characters to use

87

1. The master string can be any text string, text-string variable, or string

expression.

2. The LEFTS result always begins at the leftmost character in the master

string. You can keep as many characters as you want. If the length specified is

longer than the master string, the whole string is returned.

Examples: PRINT LEFT$("GRADUAL",4)

GRAD

PRINT LEFT$("RED",4) The string contains only

RED three characters, so only

three are printed.

10 INPUT "DO YOUWANT TO CONTINUE"; A$Checks text string A$,

20 IF LEFT$(A$,1)="Y" THEN GOSUB 70: input in line 10, for the

ELSE END ■ string Y.

LEN

LEN (string)

Abbr. none

Counts the number of characters in a text string.

Parameter: master string

The master string can be any text string, text-string variable, or string expres

sion. Blank spaces and punctuation count as characters.

Examples: PRINT LEN("HAYWIRE")

7

10 INPUT "WHAT'S YOUR LAST NAME"; L$

SO IP LEN(L$) > 8 THEN L$ = LEFT(L$,8):

PRINT "YOUR NAME HAS BEEN

SHORTENED"

30 PRINT L$

RUN

WHAT'S YOUR LAST NAME ? MACD0NALDS0N

YOUR NAME HAS BEEN SHORTENED

MACDONAL

Checks the length of

L$ and used only the

eight leftmost char

acters if the length is

over eight.

88 The BASIC Language

LET Abbr. IE

LET variable = expression

Makes a variable equal to a value. The word LET may be (and usually is)

omitted from the command. The LET command is unique in that its main

keyword is optional.

Parameters: variable = value

1. The variable type must match the type of value being assigned (e.g., if the

value is a text string, the variable must be a text-string variable).

If you want to assign more than one variable per line, separate the assignments

with colons.

2. The value can be another variable (X = Y), a calculation (X = X + 10), or a

constant value (X = 18). A variable can be equal to a calculation, including a

formula containing the variable itself and another value.

The value for a variable can change during the program.

Examples: 10 LET X = 4/2*Y Assigns the value 4/2*Y to X.

20 W$ = "NAME" Assigns the text string NAME to N$.

30 X% = X% + A Gives X% the value of the answer to X% + A.

40 A = 4:B = 5 Assigns the value 4 to A and the value 5 to B.

LIST Abbr. II

LIST line number-line number

Displays a copy of a BASIC program or BASIC program lines.

Parameters: line number—line number

Line numbers are optional. If you omit them, the whole program is displayed.

If you want to list just one line, type LIST and the line number. If you want to list

just part of the program, type the first and last lines you want to display.

If you want to list the beginning of the program, type LIST followed by a dash

and the last line number you want to display. If you want to list the end of the

program, type LIST followed by the first line you want to see and then a dash; do

not add any ending line.

Examples: LIST Displays all the lines in the current program.

LIST 20 Displays line 20 from the current program.

LIST -100 Displays the beginning of the program up to line 100.

LIST 50- Displays the program from line 50 on.

BASIC Version 3.S Commands, Functions, and System Variables 59

LOAD Abbr. 10

LOAD file name, device, relocate

Retrieves a program from a cassette tape or from a disk and loads it into

memory. Use LOAD for tape programs and nonrelocated disk loads. Use

DLOAD for loading BASIC programs from the disk. For more information see

Chapter 6.

LOADing a Tape Program

After you issue a LOAD command for a tape program, the computer tells you to

PRESS PLAY ON TAPE.

1. Insert the tape.

2. Press the REWIND button to rewind the tape completely when necessary.

Press the STOP button when the tape is rewound.

3. Type LOAD "program name"; the program name is the name of the

program you want to load. When you load the first program (after rewinding) or

the next program on the tape, you do not have to include the program name; the

computer automatically loads the next program on the tape.

4. Press the RETURN key. The message PRESS PLAY ON TAPE appears

on the screen.

5. Press the PLAY button. The screen goes blank. When the program is found,

the following message is displayed:

FOUND program name

6. Press the K8 key (or wait a moment). The screen goes blank. When the

loading procedure is finished, the READY prompt is displayed.

7. Type RUN and press the RETURN key to execute the program.

Note: Be sure to press the right buttons on the cassette recorder. The computer

knows when to wait for a button to be pressed but does not know which button

was pressed. If you press the wrong button and the computer "freezes," eject the

tape, press the computer's reset button, and repeat the loading procedure.

Note: For a nonrelocated LOAD, use LOAD "program name", 1,1. Programs

can be saved so that a nonrelocated LOAD is always performed. See SAVE.

See the VERIFY command for a quick method for searching a tape for a

program.

LOADing a Disk Program

Although it is easier to load disk programs with the DLOAD command, you can

also use LOAD. You must use LOAD to do a nonrelocated load from disk. When

you use LOAD with disk programs, you must include the disk drive device

number.

60 The BASIC Language

After you issue a LOAD command for a disk program, the computer displays

the message OK SEARCHING. When the program is loaded, the message

(program name) FOUND is displayed, with the program's name displayed. Type

RUN to execute the program.

Parameters: "file name", device number, relocate flag

1. You must include the name of the file or use wild cards to get the first

program whose name matches. Enter the name in quotes. You can use a variable

name in place of the file name. The variable must have a value. It may be in

parentheses (not in quotes). The only time this is likely to be useful is when you

load a program from within another program.

2. Device number is 1 for cassette recorder, and 8 for disk drive. The default

value is 1, so you can omit this parameter if you are loading from a cassette tape.

3. You are unlikely to use the relocate flag except for machine-language

programs. A flag of 0 tells the computer to load the program at the beginning of

the BASIC program area, and 1 loads the program at the memory location from

which it was saved.

Note: For disks, only program-type files can be LOADed.

Note: In program mode, a RUN command (with no CLR) is automatically

issued following a LOAD operation. For example, you may want to LOAD a

machine language subroutine from BASIC.

10 IFL=OTHENL=1 : LOAD "file",8,1

The LOAD is executed only once, and the program continues.

Examples: LOAD Loads the next program on tape.

LOAD "SHAPES3",8 Loads file SHAPES3 from disk.

90 LOAD (Y$) Loads a file from tape. The name of the file is the

current value of Y$.

LOCATE Abbr. loC

LOCATE coordinates

Repositions the pixel cursor on a graphic mode screen. The invisible pixel

cursor marks the final point of the previous drawing and the default beginning

point of the next drawing.

Parameter Values

Coordinates

Column coordinate

High-res modes

Multicolor modes

Row coordinate

0-319

0-159

0-199

BASIC Version 3.5 Commands, Functions, and System Variables 61

Give the coordinates of the point on the graphic screen where you want the

pixel cursor to be moved. The next drawing will use this point as its starting point

unless the drawing command gives some other starting point. For more informa

tion, see Chapter 4.

Example: 10 GRAPHIC 4,1

20 LOCATE 30, 25 Puts the pixel cursor at column 30, row 25.

30 DRAW TO 60,50 Draws a line from the current pixel-cursor location

to column 60, row 50.

LOG Abbr. none

LOG (number)

Finds the natural logarithm of a number. LOG returns the log base e (e = the

mathematical constant, approximately 2.71828183) of the number in paren

theses. Divide by LOG(IO) to get the log base 10. For more information, see the

Mathematical Calculations section of Chapter 3.

Parameter: any numeric expression with a positive value

Examples: PRINT L0G(2) Prints the natural logarithm of 2.

.693147181

PRINT L0G(2)/L0G(10) Prints the logarithm base 10 of 2.

.301029996

LOOP Abbr. loO

Works with DO to set conditions for a repeated sequence of program lines. See
DO.

MID$ Abbr. ml

MID$ (string, start position, length)

Gets a substring of the specified length within a master text string. MID$ starts

the substring at the character position specified. MID$ can also be used to change

part of a text string.

Parameters: master string, starting position, number of characters to use

1. The master string can be any text string, text-string variable, or string

expression.

2. The substring is begun at the starting position; characters that come before

the starting position are not used. The starting position can be any character

position in the master string. If it is greater than the length of the master string, a

null string is returned.

62 The BASIC Language

3. The length of the substring can be any length. If it is greater than the number

of characters after the start position in the master string, the entire rest of the

string is returned. The length can be omitted. If it is omitted, all of the string after

the start position is returned.

MID$ can also be used on the left side of an equation to replace a substring of a

given length within the master string.

Examples: PRINT MID$(''GRADUATE'',6,3)

ATE

10 INPUT "ENTER THE NEXT MODEL"; A$ Examines five char-

20 IP MID$(A$,6,5)<>"WAG0N" THEN END acters starting at

30 MID$(A$,6,5>"SEDAN": PRINT A$ character 6 for the

RUN string WAGON.

ENTER THE NEXT MODEL ? 4-DR WAGON WAGON is replaced

4-DR SEDAN by SEDAN.

PRINT MID$("R0CKETSHIP",7)

SHIP

MONITOR Abbr. mO

Leaves BASIC and goes to the built-in machine-language monitor. You can

use the 13 machine-language monitor commands to write and execute programs

in machine language. Return to BASIC from the monitor by typing X and

pressing the RETURN key. See Chapter 5 for more information on machine

language.

NEW Abbr. none

Erases the current program from memory. The program cannot be recalled

unless it is saved on tape or disk. (If you execute a NEW accidentally and want to

try to retrieve your program, see Chapter 3 for information on unNEWing.)

Always issue a NEW command before you start writing a new program to be sure

the program area of memory is clear. If you do not clear the memory, lines from

the previous program will mix with your current program.

NEXT Abbr. nE

Marks the closing bracket of a FOR loop. See FOR.

BASIC Version S.S Commands, Functions, and System Variables 63

ON ... GOSUB Abbrs. on/goS

ON number GOSUB line number, line number, etc.

Branches the program to one of a list of subroutines. The selection is based on

the condition of the ON value and the position of the subroutine line numbers in
the GOSUB list.

Each time ON ... GOSUB executes, only one of the line numbers in the

GOSUB list is used. When the ON value equals 1, the computer goes to the first

subroutine in the GOSUB list. When the ON value equals 2, the computer goes to

the second subroutine in the GOSUB list, and so on.

Parameters: ON value GOSUB subroutine line number list

1. The ON value can be a variable or a calculation. It cannot be a negative

number. If it is equal to zero or a number that is greater than the number of

subroutine line numbers in the GOSUB command, no subroutine is executed. If it

is not a whole number, its truncated value is used. For example, if there are four

subroutine line numbers in the GOSUB command (e.g., ON number GOSUB 40,

70, 100, 130), the number must be greater than or equal to 1 and less than 5 for a
subroutine to be executed.

2. The ON value selects a subroutine line number from the GOSUB list based
on its relative position in the GOSUB list.

Example: 10 input "do you want to draw a triangle, square/ or pentagon"; s$
12 REM USE INPUT FROM LINE 10 TO SET NUMBER OF SIDES

15 S$ = LEFT$(S$,l) : X = 3 : IF S$ = "T" GOTO 20
16 X = 4 : IF S$ = "S" GOTO 20

17 X = 5 : IF S$ <> "P" GOTO 10

20 INPUT "DO YOU WANT THE SHAPE TO BE RED, BLUE, OR GREEN"; C$
30 REM USE INPUT FROM LINE 20 TO SET COLOR IN LINE 60

40 IF LEFT$(C$,1) = "R" THEN C = 3: GOTO 60
50 IF LEFT$(C$,1) = "B" THEN C = 7: ELSE C = 6
60 COLOR 1,C,3

80 GRAPHIC 2,1

85 REM 2 IS SUBTRACTED FROM NUMBER OF SIDES

86 REM WHEN X=3, 3-2=1, SO PROGRAM GOES TO FIRST SUBROUTINE, ETC.
90 ON X-2 GOSUB 140, 180, 210

100 REM AFTER SUBROUTINE, PROGRAM RESUMES AT LINE 110

110 INPUT "WANT TO DRAW ANOTHER SHAPE"; A$

120 IF LEFT$(A$,1) = "N" THEN GRAPHICCLRrEND: ELSE 10

130 REM BEGIN SUBROUTINE TO DRAW TRIANGLE

140 CIRCLE, 160,100,60,50,,,,120

150 PAINT, 160,100

160 RETURN

170 REM BEGIN SUBROUTINE TO DRAW SQUARE

180 BOX, 100,50,220,150,,1

190 RETURN

200 REM BEGIN SUBROUTINE TO DRAW PENTAGON

210 CIRCLE, 160,100,60,50,,,,72

220 PAINT, 160,100

230 RETURN

64 The BASIC Language

ON ... GOTO Abbr. on/gO

ON number GOTO line number, line number, etc.

Branches the program to one of a list of line numbers. The selection is based on

the condition of the ON value and the position of the line numbers in the GOTO

list.

Each time ON... GOTO executes, only one of the line numbers in the GOTO

list is used. When the ON value equals 1, the computer goes to the first line

number in the GOTO list. When the ON value equals 2, the computer goes to the

second line number in the GOTO list, and so on.

ON ... GOTO is similar to IF ... GOTO, but ON lets you include a series of

GOTO lines while IF lets you include only one.

Parameters: ON value GOTO line number list

1. The ON value can be a variable or a calculation. It cannot be a negative

number. If it is equal to zero or a number that is greater than the number of line

numbers in the GOTO command, no GOTO is executed. If it is not a whole

number, its truncated value is used. For example, if there are four line numbers in

the GOTO command (e.g., ON number GOTO 40,70,100,130), the number must

be greater than or equal to 1 and less than 5 for a GOTO to be executed.

2. The ON value selects a line number from the GOTO list based on its relative

position in the GOTO list.

Example: 10 TRAP 130

20 IITPUT "WHAT YEAR (1985-1994)";Y

30 PRIFT "1TEW YEAR'S DAY PALLS ON ";

40 0NY-1984G0T0 70,80,90,100,120,60,70,80,100,120

50 PRINT^IWVALID INPUT":GOT020

60 PRINT"MONDAY":END

70 PRIWT"TUESDAY":END

80 PRINT"WEDNESDAY":END

90 PRINT"THURSDAY":END

100 PRINT"PRIDAY":END

110 PRINT"SATURDAY":END

120 PRDOT"SUNDAY":END

130 RESUME 50

OPEN Abbr. oP

OPEN file number, device, secondary address, file name

Opens access to a peripheral device or to a tape or disk file. Devices and files

must be OPENed before you can issue other commands (such as INPUT# or

PRINT#) to them. You do not have to use OPEN before you load or save a

program.

BASIC Version 3.5 Commands, Functions, and System Variables 65

Parameters: logical file number, device number, secondary address, "file name"

1. The logical file number can be from 1 to 255. Normally, use 1 to 127. For

some devices, 0 is a valid logical file number. Logical file numbers greater than

127 cause a line feed character to be sent after the carriage return at the end of

each line. Some non-Commodore printers or RS232 devices may require this.

The file number is not actually a part of the file or device you are opening. The

file number isjust a temporary number used until you CLOSE the file. It gives the

computer a way to keep track of which device or file you are accessing. The file

number is like a number you take at a deli counter or laundry—it is associated

with you and your order only while your business is being transacted.

Once the device or file is OPEN, you must use the same file number for the

device or file when you address other commands to it. These other commands are

CLOSE, CMD, GET#, INPUT#, PRINT#, and PRINT# USING. Once the file

is CLOSEd, the logical file number is no longer associated with the file and you

do not have to use the same logical file number the next time you OPEN the file.

2. The device number identifies the other end (device or file) of the communi

cation channel you are opening through the computer. If you are accessing a disk

file, use the disk drive device number; if you are accessing a tape file, use the

cassette recorder device number, and so on.

Use these device numbers:

0

1

2

3

4-5

keyboard

cassette recorder

RS232 port

screen

printer (default is 4)

8-11 disk drive (default is 8)

3. The meaning of the secondary address depends on the device you are

accessing.

• For a cassette recorder, there are three: 0 (read from tape), 1 (write to tape and

close with end-of-file marker), or 2 (write to tape and close with end-of-tape

marker). The default is 0.

• For a printer, you can use secondary addresses to send commands. For more

information, see Chapter 6 and the printer manual; these commands differ

according to printer brand and type.

• For a disk drive, a secondary address names the channel being used. For more

information, see Chapter 6 and the disk drive manual.

66 The BASIC Language

4. You can use an optional name for the file on disk or tape. The file name can

be any 1 to 16 characters. If you intend to call the file by name, do it now because

you will not be able to later.

5. For disk files, include in the quotation marks the optional type of file

following a comma. The types are P (program file), S (sequential file), L (relative

file), or U (user file). The default is sequential file. For more information, see

Chapter 6.

6. For disk files, an optional disk file mode (R for read, or W for write) can

follow the file type (still in quotation marks and separated from the type by a

comma). The default is read.

Examples: OPEN 4,4 :■ Opens communication to the printer so you

can print directly onto it.

OPEN 1,1,0/'BOXES'' Opens a tape file for reading from tape.

OPEN 8,8,15 Opens the command channel to the disk drive.

OPEN 1,8,4,"REC3,S,W" Opens a sequential file REC3 on a disk so you

can write data records to the file.

OPEN 4,4,0 Opens printer in upper case/graphic mode.

OPEN 4,4,7 Opens printer in upper/lower case mode.

PAINT Abbr. pA

PAINT color source, coordinates, mode

Used in any graphic drawing mode to make the outline of a shape solid. The

shape is filled with color from the starting point until boundaries are met on all

sides. See Chapter 4 for more information on coordinates for PAINT.

Parameter Values Default

Color source

Coordinates

Column coordinate

High-res modes

Multicolor modes

Row coordinate

Boundary mode

0-3

0-319

0-159

0-199

Oor 1

1

pixel cursor

0

1. The color source indirectly selects the painting color. There are five color

sources, but color source 4 (the border color) cannot be used in drawing com

mands. Color sources 2 and 3 can be used only in multicolor modes.

0 screen background color

1 foreground color (default value)

BASIC Version 3.5 Commands, Functions, and System Variables 6?

2 multicolor mode extra color 1

3 multicolor mode extra color 2

4 screen border color

The color source number you include in the PAINT command tells the

computer to draw in the current color for that source. For example, if you select

1, the computer paints in the current foreground color. If you want to use a color

other than one of the current source values, you must first use the COLOR

command to change one of the source values. Only sources 1 and 2 can be used to

draw with more than one color on the same screen. Sources 0 and 3 are global

(whole screen) colors.

If you want to use the default value (1, the current foreground color), you do

not have to type a number, but you must type a comma before the next parameter.

2. The coordinates tell the computer wfyere to start painting. You can tell the

computer to start at any point within the space you want to paint. You never need

to include ending coordinates. The computer stops painting when the border is

reached.

3. Boundary mode lets you choose whether to have the painting stop when it

reaches a border of the color source with which it is painting (select 0), or when it

reaches any nonbackground color (select 1). The default is 0. The other choice is

meaningful only in multicolor mode.

Note: If the specified starting point was previously colored with a boundary

color, no painting will be done.

Example: 10 GRAPHIC 3,1

20 CIRCLE, 80,50,30,50,,,,90

30 COLOR 3,12,4

40 PAINT 3, 80,50,1

Draws a diamond and fills it in with

the color in color source 3.

PEEK

PEEK (memory location)

Abbr. pE

Finds the contents of any RAM location. The location must be between 0 and

65535. PEEK and POKE are complements and can be used together to place and

look at memory contents. Examining ROM using PEEK is not easy. See Chapter

4 (Copying the Standard Character Set) for one method.

Example: POKE 3090,1

PRINT PEEK(3090)

1

Displays an A at screen location 3090.

Prints the value of memory location 3090.

68 The BASIC Language

POKE Abbr. pO

POKE memory location, number

Places a single value directly into a specific RAM location, such as each

position in the screen memory. Unless you are an advanced programmer, you are

unlikely to use this command.

Parameters: memory location, value

1. Names the specific address of a memory location or input/output register.

The possible values are 0 to 65535. You can find specific addresses on the memory

map in Appendix G.

2. Gives the number (0-255) for the value you want to place in the memory

location. See the screen display chart in Appendix E for values that can be poked

to screen locations. These values are not the same as CHR$ values.

Example: 10 SCNCLR

15 REM 3079 IS COL 7 OP ROW 1 ON SCREEN; 4071 IS BOTTOM

RIGHT CORNER

20 FOR X=3079 TO 4071 STEP 41

30 POKE X,0

25 REM PRINT AKT @ SIGN AT 41-SPACE INTERVALS

40 NEXTX

50 FOR Y=3103 TO 4071 STEP 39

55 REM PRINT AN @ SIGN AT 39-SPACE INTERVALS

60 POKE Y,0

70 NEXTY

POS Abbr. none

POS (number)

Finds the column in which the cursor currently resides. This is the column in

which the next item will be displayed by a PRINT command. The column

number is between 0 and 39. The number in parentheses is a dummy argument,

which means it does not mean anything. It is nonetheless required, and you

should just use POS(O). You can also find the column by using PEEK(202) and

the row by using PEEK(205).

PRINT Abbr. ?

PRINT output list

Displays the following types of information on the screen:

• Text entered in quotes

• Solutions to calculations

BASIC Version 3.5 Commands, Functions, and System Variables 69

• Values of variables or functions

Each PRINT command can contain one or more of these types of data. You

can use commas or semicolons to separate multiple PRINT items and to deter

mine the format for output.

Parameters: "text message9'

variable

calculation

All the parameters are optional. If no parameter is included, the PRINT

command prints only a carriage return. In most cases this results in a blank line

being PRINTed, but if the previous PRINT command ended in a semicolon, a

following PRINT with no parameters just goes to the next line. See the later

paragraph on using semicolons.

1. All text must be enclosed in quotes. Text messages are printed exactly as

they are typed. Calculations and variables typed inside quotes are also printed as

they are; PRINT does not attempt to find solutions for them when they are in

quotes.

2. When you tell the computer to PRINT a variable, the computer actually

prints the value the variable stands for, not the variable name. If no value has

been assigned to a numeric variable, aO is printed; if no value has been assigned to

a text-string variable, nothing is printed. Positive numeric values are printed with

a leading blank space; negative numeric values display the minus sign in front of

the number.

3. When you tell the computer to PRINT a calculation, the computer actually

prints the solution to the calculation. If the calculation contains a variable for

which no value has been assigned, the computer considers the variable to have a

value of 0 and solves the calculation accordingly.

Punctuation in PRINT Commands

You can separate multiple PRINT command items with commas or semicolons.

If you want to link the output from more than one PRINT command, you can

add a comma or a semicolon to the end of the first PRINT command. This

trailing punctuation tells the computer to treat the output as if it were from one

PRINT command instead of several.

Commas Force separate items into separate output zones of 10 spaces

each. Each new item begins in a new output zone, regardless

of how much space the previous item takes.

Semicolons Print separate items right next to each other. Numbers are

printed with one space or a negative sign in front and one

space behind. If you do riot like this number format, see

PRINT USING or STR$ for other options.

70 The BASIC Language

Examples: PRINT "THE MEDIUM"

THE MEDIUM

PRINT 3/2,4+5, -2+2

1.5 9 0

10 PRINT 3*10.2; 4-8;

15 REM SKIPTO THE NEXTLINE IFTHENEXTITEM IS PAST COL 10

20 IP P0S(X)>10 THEN PRINT

30 PRINT 5+67.3

RUN

30.6 -4 72.3

10 INPUT "YOUR NAME AND AGE"; N$A

20 PRINT N$;", YOU ARE"; A

YOUR NAME AND AGE ? DAN

?? 26

DAN, YOUARE 26

PRINT# Abbr. pR

PRINT# file number, output list

Puts data values in an OPEN file such as printing information on a printer. Use

PRINT# to put values into tape or disk data files. To retrieve these data, use

INPUT# or GET#. When you use PRINT# to tell the printer what to print, you

can use semicolons and commas to separate multiple data items, and they have

the same spacing effect as they have in PRINT commands.

When sent to a data file, a comma will cause a number of spaces to be sent and a

semicolon will place data items right next to each other. The data bytes are stored

in the file in the same format as they would be displayed on the screen in a PRINT

command. The format ofthe bytes written to a data file must be designed with the

method of retrieval in mind. If they are to be read one at a time by the GET#

command, any format is alright. However, if they are to be read by the INPUTS

command, care must be taken to store comma characters between values and

carriage return characters between lines of input.

Parameters: logical file number, variable(s) or value(s)

1. The file number is a logical file number that links the file or device to other

commands, including the OPEN command that accesses the device or file before

it can be used. See OPEN for more information on logical file numbers.

2. The variable type must match the type of value to be written (e.g., if you are

writing text values, you must use text-string variables). If the PRINT# command

contains multiple variables, separate them with commas or semicolons.

BASIC Version 3.5 Commands, Functions, and System Variables 71

Example: 10 OPEN" l,8,4/'S0RT,S,W" Opens a disk file.

30 INPUT "HOW MANY NAMES TO ENTER";T

40 FORX=1TOT

50 INPUT "NEXT NAME"; A$

60 PRINT#1A*;V; Puts the value input

70 NEXT X in line 50 into the

80 CLOSE 1 disk file SORT.

Closes the disk file.

NEW

10 INPUT "STAFF TO RECEIVE MEMO"; A$

20 OPEN 4,4 Accesses printer.

30 PRINT#4,"MEM0" Prints to printer.

40 PRINT#4,"T0 ALL ";A$;" STAFF MEMBERS"

50 CLOSE 4

PRINT USING or PRINT# USING Abbrs. ?usI/pR/usI

PRINT USING format; output list

PRINTS file number, USING format; output list

Allows you to design a format for any type of output—text or numbers. You

can use up to nine symbols to define how you want printed material to appear.

The PUDEF command lets you replace up to four of the PRINT USING

symbols.

Parameters: #logical file number, "format description"; items to be printed

1. Include a file number and # sign if you are writing to an OPEN file or device.

Omit this parameter if you are not writing to a file or device.

2. The format description can contain any of the following nine symbols. The

format must be enclosed in quotes.

Symbol Meaning

Represents any one character. If the item to be printed is longer

than the number of #s in the format, and the item is numeric, an

error occurs and *s are printed instead of numbers. If the item is

text, only as many characters of text as there are #s are printed.

, Prints a comma in numbers, which you cannot ordinarily do.

Place the comma in the format in the same position in which it

will appear in the number to be printed.

Prints a decimal point in numbers. Only one decimal point can

appear per number to PRINT.

$ Prints a dollar sign. If you want the $ to appear right next to any

72 The BASIC Language

number, place a # before the $ in the format. Otherwise, the $

does not "float" to a position next to the number (e.g., $ 3.50

instead of $3.50).

+ Displays a plus sign at the beginning or end (but not both) of a

number. If the number to be printed is negative, a minus sign is

displayed in the place designed for the plus sign.

Displays a minus sign at the beginning or end (but not both) of a

number. If the number to be printed is positive, no sign is

displayed.

If you include no sign in the format, and the number is nega

tive, a minus sign is displayed at the beginning of the number and

before a dollar sign, if one is included. If the number is positive,

no sign is displayed, but the space for the sign may be used to

display an extra digit in the number.

tttt Prints the number in scientific notation (e.g., 2E-04). The up

arrows must be preceded by a number sign (#).

= Centers text output in the format field (e.g., if the format field is

"-#######", and the text to be printed is TEST, TEST is printed

two characters to the right, centered in an eight-character field,

with the = sign counting as a character space).

> Right-justifies text output. If the text to be printed is shorter than

the output format, the text is printed right-justified instead of

left-justified.

Note: If numbers are longer than the format for numeric output, the number is

not printed. Instead, * symbols are printed. If a text string is longer than the

format for text output, as many characters of the text are printed as there are

spaces in the format (e.g., if there are six places in the format and the item to be

printed is SCHOOLHOUSE, SCHOOL is all that is printed).

3. The items to be printed can be text or numeric, and they can be variables or

formulas. List these items at the end of the PRINT USING command, separated

from the format by a semicolon. Multiple items to be printed must be separated

by commas.

Using Trailing Semicolons to Control Output from Multiple Commands

If you want the output from the next PRINT or PRINT USING command to

appear on the same line as the last output, put a semicolon at the end of the list of

items to be printed. This trailing semicolon has the same effect on output as a

trailing semicolon in a PRINT command has.

BASIC Version 3.S Commands, Functions, and System Variables 73

Note, however, that while a PRINT command can end in either a trailing

semicolon or a trailing comma, a PRINT USING command can end only in a

trailing semicolon. Also, while PRINT command items can be separated by

either commas or semicolons, only commas are allowed as item separators in a

PRINT USING command. The PRINT USING command allows more control

over output because the format definition determines exactly how the output

looks, so there is no need for semicolons as separators in a PRINT USING

command.

Examples: 10 INPUT "ITEM"; 1$

SO INPUT "PRICE"; P

25 REM PRINT UP TO 12 LETTERS

30 PRINT USING "###########"; j$-

35 REM PRINT THE PRETAX PRICE

40 PRINT USING "#$##,###.##"; p

50 PRINT USING "#####"; "TOTAL";

55 REM PRINT THE PRICE PLUS TAX

60 PRINT USING "#$##,###.##"; p*l.O6

RUN

ITEM? VIDEO EQUIPMENT

PRICE? 1299.99

VIDEO EQUIPM $1,299.99

TOTAL $1,377.99

RUN

ITEM? YACHT

PRICE? 1000000.99

YACHT ***********

TOTATi* **********

NEW

10 INPUT "TITLE"; A$

20 INPUT "NAME"; B$

25 REM CENTER TITLE AND NAME

30 PRINT USING "=#################";A#

40 PRINT USING "=#################'';B$

RUN

TITLE? TRAINING CATS

NAME? JANE SMITH

TRAINING CATS

JANE SMITH

The # before the $

forces the $ to be

printed right next to

the first digit. With

out the leading #,

blanks appear

between the $ and

any unused digits in

the format.

VIDEO EQUIP

MENT is longer than

the 12 letters allowed

by the format, so it is

truncated.

On this run, the

number of digits

entered for the price

is greater than the

number accepted by

the format, so the

field is filled with

* symbols. Words

that are too long are

truncated; numbers

that are too long are

not printed at all.

74 The BASIC Language

PUDEF Abbr. pU

PUDEF "one to four characters"

Lets you replace with any other symbol the symbols displayed by subsequent

PRINT USING commands. You can replace blanks, commas, decimal points,

and dollar signs from PRINT USING commands that follow the PUDEF

command. You can issue as many PUDEF commands as necessary to print

formatted data according to your special purposes.

Characters are replaced by their position in the PUDEF command. The

default values for each position are used if you do not specify a different character

in the appropriate position.

Parameter Values Default

First

Second

Third

Fourth

Any character

Any character

Any character

Any character

Blank space

Comma

Decimal point

Dollar sign

When you want to replace all the blank spaces in the output printed by a

PRINT USING command, put the replacement character in the first position in

the PUDEF command. When you want to replace commas, put the replacement

character in the second position, and so on.

Because the computer recognizes replacement characters by position, you

must type the default values in their positions if the following two conditions are

true:

• You are not changing the default values.

• They appear in the PUDEF format before the characters you are changing.

If the default values appear after the changes, you can omit the defaults and

just end the command. For example, if you want to leave blanks and commas

when you change decimal points, you must place a blank and a comma in their

positions in the PUDEF command and then type the decimal point replacement

in the third position.

Examples: 90 PUDEF "//" Replaces blanks with slashes and decimal points with

apostrophes. Commas and dollar signs are

retained.

75 PUDEF " .bA" Replaces commas with decimal points, decimal

points with lowercase b's, and dollar signs with A's.

Blanks are retained.

BASIC Version 3.5 Commands, Functions, and System Variables 75

RCLR Abbr.rC

RCLR (color source)

Finds the number of the color currently assigned to any of the five color

sources:

0 screen background color

1 foreground color

2 multicolor mode extra color 1

3 multicolor mode extra color 2

4 screen border color

Type the number of the color source in parentheses. Only the color number is

found. If you want to find the luminance, use the RLUM function.

Examples: PRINT RCLR(1) Prints the number for the current foreground color,

3 which is 3, red.

PRIUTT RCLR(3) Prints the number for a current multicolor extra

IS color, which is 12, pink.

ROOT Abbr. rD

RDOT (mode)

Finds one of three pieces ofinformation about the condition of the pixel cursor

by typing one of the following values for mode:

0 returns the column coordinate

1 returns the row coordinate

2 returns the color source

The color source tells you with which of the four possible color sources the dot

at the pixel cursor location is drawn:

0 screen background color

1 foreground color

2 multicolor mode extra color 1

3 multicolor mode extra color 2

Drawings cannot be made in the fifth color source, which determines the color

76 The BASIC Language

of the screen border. If you want to find the number of the color in the color

source, use the RCLR function.

READ

READ input list

Abbr. rE

Always paired with DATA commands, one of several ways to assign data

values within a program. READ contains a list of variables, and DATA contains

a list of values. READ gets a value from a DATA command for each of its

variables. You cannot input data from the keyboard for READ commands.

The program must contain enough DATA values for the READ variables. If

there are not enough values, the program is aborted and an OUT OF DATA

ERROR message is displayed. However, the total number ofDATA values in all

DATA commands is what counts, not the number of values per DATA com

mand. When one DATA command runs out of values, READ automatically

looks for the next DATA command in the program. DATA commands do not

have to precede READ commands.

You can reREAD DATA values after you use the RESTORE command to

reset the data pointer to the beginning of a DATA command. See RESTORE.

Parameter: variable(s)

The READ variables and the value types in the DATA commands must match

(e.g., only text strings can be assigned to text-string variables). Variables must be

separated by commas.

Examples: 10 DATA 55,44,33

20 READA,B,C,D

40 PRINT A,B,C,D

RUN

?0UT OP DATA ERROR IN 20

NEW

10 DATA MONDAY, MARCH, 18TH

20 READA$,B$

30 READ C$,X

40 PRINT A$,B$,C$

50 DATA 1985

60 PRINT B$;X

RUN

MONDAY MARCH 18TH

MABCH 1985

The program must have at least

as many DATA values as READ

variables.

BASIC Version 3.5 Commands, Functions, and System Variables 77

70 RESTORE Resets the data pointer to begin

ning of line 10.

80 READ A Reads first DATA item in line 10.

RUNT Line 80 reads a text value for a

?TYPE MISMATCH ERROR IN 80 numeric variable.

REM Abbr. none

REM remarks

Contains comments explaining program lines. REMarks make the program

easier to understand when any user reads the program lines. If your program is

longer thanjust a few lines, you should include REMarks so your program is well

documented. Because REM statements are ignored by the computer, they can

contain anything.

Parameter: remark

The remark does not need to be enclosed in quotation marks.

Note: In most BASIC lines, shifted characters are allowed only for abbrevia

tions or in quotes. In a REM statement, shifted characters are fine until the

program is LISTed. The computer treats a shifted character as a BASIC token

and prints, not the character, but the BASIC keyword it corresponds to (see

Appendix B for a token list). This is very annoying. If you want shifted characters

in a REMark, put them inside quotes to avoid this problem.

Example: 10 REM PRINT A GREETING WITH THE USER'S NAME

SO INPUT "WHAT'S YOUR NAME"; N$

30 PRINT "HELLO, "; N$; ", WHAT'S NEW?"

RENAME Abbr. reN

RENAME Ddrive, old file name TO new file name, ON Uunit

Replaces the name of a disk file. The file itself is not affected.

Parameters: D drive number, "old name" TO "new name", U unit number

1. Give the number of the drive containing the disk whose file you want to

rename. Drive numbers are either 0 or 1; no other numbers are allowed. The

default value is 0. This parameter is optional. Ifyou are using a single drive, leave

out the drive number.

2. Always list the file's current name first. Be sure to put it in quotes.

3. TO is part of the RENAME command and must be included.

4. Enclose in quotes the new name you want to give the file.

5. U unit number is an optional parameter. Use it only if you have more than

78 The BASIC Languag

one disk drive connected to your computer and you are using a device other than

unit 8 in the RENAME procedure. You must precede the unit number with U,

and the unit number must be between 8 and 11. You can type ON before U, but

ON is not required.

Note: The drive and unit number parameters and the file names can be

specified with a variable or expression in parentheses.

Examples: RENAME Dl, "OLD" TO "NEW" Changes the name of file OLD to

NEW.

RENAME "TESTSORT" TO "S0RT1" Changes file TESTSORT to

SORT1.

RENUMBER Abbr. renU

RENUMBER new start line number, increment, old start line number

Renumbers lines in the current BASIC program. This command can be

executed in immediate mode only; you cannot include it in a program.

Parameter Values Default

New first line number

Increment between lines

First line number to be

renumbered

Any legal number*

Any legal number*

Any line number in the

program

10

10

First line in the

program

♦Renumbering must not force line numbers to exceed the highest line number allowed, which is

63999, or strange results will occur.

1. Regardless of what numbering scheme is used in the current program, you

can choose any new first line number. If you omit this parameter and thereby use

the default, you must type a comma in place of the parameter in the command.

2. The increment tells the computer how many numbers to skip between line

numbers. Even if the current line numbers are erratically spaced (e.g., 10, 15,18,

20, 30, etc.), the RENUMBER command changes all line numbers so they are

evenly spaced (e.g., 10, 20, 30, 40, 50, etc.). If you omit this parameter, type a

comma in its place.

3. You can give any number in the program as the first line to be renumbered.

This parameter lets you choose a line other than the first one in the program to

begin renumbering.

Examples: RENUMBER 100 Makes 100 the new first line

number. The defaults for incre

ment and first line number to be

renumbered are accepted.

BASIC Version 3.8 Commands, Functions, and System Variables 79

1 REM POLYGON PROGRAM

10 INPUT "HOW MANY SHARES";T

15 COLOR 1,9,5

SO GRAPHIC 1,1

30 CIRCLE, 160,100,60,50,,,,360/T

45 PAINT, 160,100

RENUMBER 25, SO, 10

LIST

1 REM POLYGON PROGRAM

S5 INPUT "HOW MANY SHARES";T

45 COLOR 1,9,5

65 GRAPHIC 1,1

85 CIRCLE, 160,100,60,50,,,,360/T

105 PAINT, 160,100

RESTORE

RESTORE line number

Begins at line 10 to renumber in

increments of 20. The first new

line number is 25.

Abbr. reS

Resets the data pointer that keeps track of the last item READ in a DATA

command. Once the DATA command is reset, the values in the DATA command

can be assigned again to READ variables. RESTORE does not affect READ

commands or any other commands. You can reset to the beginning of the first

DATA command in the program or to any DATA command in the program.

Parameter: line number

Example:

The line number parameter is optional. Ifyou omit it, the pointer returns to the

first DATA item in the first DATA command. If you specify a line number, the

pointer is reset to the first DATA value in the first DATA command after that

line. Data in previous DATA commands would not be reused.

10 DATA 1,2, 3

SO DATA 7, 8, 9

30 READ A, B, C, D, E, F

40 PRINT A; B; C; D; E; F

50 RESTORE SO

60 READA,B,C

70 PRINTA;B;C

RUN

1 S 3 7 8 9

7 8 9

The RESTORE command in line 50 resets

the DATA pointer to the beginning of line

20. The READ command in line 60

reREADs the DATA values in line 20.

80 The BASIC Language

RESUME Abbr. resU

RESUME line number

RESUME NEXT

Works with the TRAP command, which catches program errors. Use

RESUME to return to the current program after an error is found by a TRAP

command. RESUME works only in conjunction with TRAP; RESUME cannot

continue program execution unless the program is suspended by a TRAP

command.

Parameters: line number or NEXT

1. If you issue a RESUME command with no parameter, execution resumes at

the line where the error occurred. The computer will then try to execute this line

again.

2. If you include a line number after the RESUME command, the program

goes to that line and resumes execution there. Any line number that appears in the

program can be used. If you use a line number, do not also type NEXT.

3. If you type NEXT, the program resumes execution at the line after the one

that contained the error. The erroneous line is not reexecuted. If you use the

NEXT parameter, do not also use a line number parameter.

Examples: RESUME S50 Restarts the program at line 250.

RESUME NEXT Resumes execution at the line following the one that

contains the TRAPped error.

RETURN Abbr. reT

Ends a subroutine and returns program execution to the line after the last

GOSUB command. RETURN is always paired with a GOSUB command. See

GOSUB.

RGR Abbr. rG

RGR (number)

You can find the number of the current graphic mode:

0 text/graphic

1 high-resolution

2 split-screen high-resolution

3 multicolor

4 split-screen multicolor

BASIC Version 3.5 Commands, Functions, and System Variables 81

The number in parentheses is a dummy argument, which means it does not

mean anything. It is nonetheless required, and you should just type RGR(O).

Example: PRINT RGR(O)

2 The current graphic mode is split-screen high-res.

RIGHTS Abbr. rl

RIGHTS (string, length)

Returns a substring of the designated string with the specified length. RIGHTS

is used frequently to check the end of an input string.

Parameters: master string, number of characters to use

1. The master string can be any text string, text-string variable, or string

expression.

2. The RIGHTS substring always begins at the rightmost character in the

master string. You can use as many characters as you want. If you specify more

characters than the string contains, the entire string is returned.

Examples: PRINT RIGHT$("GRADUATE",3)

ATE

PRINT RIGHT$("RED",4) The string contains only

RED three characters so only

three are printed.

10 INPUT "WHAT DAY IS IT"; D$

20 INPUT "MORNING OR AFTERNOON"; T$

30 IFRIGHT$(D$,4>"SDAY''THEN

PRINT "TUES/THURS SCHEDULE"

RUN

WHAT DAY IS IT? THURSDAY

MORNING OR AFTERNOON? AFTERNOON

TUES/THURS SCHEDULE

RLUM Abbr. rL

RLUM (color source)

Find the number of the color luminance level assigned to one of the five color

sources:

0 screen background color

1 foreground color

The BASIC Language

2 multicolor mode extra color 1

3 multicolor mode extra color 2

4 screen border color

To find the luminance level, type the number of the color source in parentheses.

Only the luminance level is found.

The luminance level is stated in a range from 0 (darkest shade) to 7 (lightest

shade).

If you want to find the color number, use the RCLR function.

Examples: PRINT RLUM(l)

3

RND

RND (number)

Example:

Prints the luminance level for the current

foreground color. The level is found to be 3.

Abbr. rN

Finds a random number between 0 and 1. The numbers found are decimal

values.

A negative number in parentheses reseeds the random number generator with

that value. A zero reseeds the generator from the system clock. A positive number

returns the next number in the current random number sequence. The generator

should be reseeded only once in a program. The numbers in the sequence should

be used thereafter.

Chapter 3 contains more information about mathematical functions, including

RND.

5 X = RND(O)

10 X = INT (9 * RND(l)) + 1

20 INPUT "GUESS A NUMBER

BETWEEN 1 & 9";N

30 IF N <> X THEN PRINT "SORRY":

ELSE PRINT "RIGHT": GOTO 60

40 INPUT "GUESS AGAIN"; A$

50 IF A$ = "NO" THEN 60: ELSE

GOTO SO

60 INPUT "PLAY AGAIN";A$

70 IF A$ = "NO" THEN END: ELSE 10

RUN

GUESS A NUMBER BETWEEN 1 & 9? 8

SORRY

GUESS AGAIN? OK

Reseeds the generator.

Generates a random whole

number between 1 and 9.

You can choose to keep

guessing until you get the right

answer.

To play again, goes to get a

new random number.

BASIC Version 3.5 Commands, Functions, and System Variables 83

GUESS A NUMBER BETWEEN 1 & 9? 6

RIGHT

PLAY AGAIN? NO

RUN

RUN line number

Abbr. rU

Executes the current BASIC program. Each time you issue a RUN command,

all variables in the program are cleared (numeric variables to zero and string

variables to nulls) because RUN contains an automatic CLR command.

Parameter: line number

Ordinarily you would use no parameter with the RUN command. But you can

include a line number if you want program executiori to start at a line other than

the first one in the program. You might want to run just part of a program while

you are still working it out.

Examples: RUN

ROT 200

Executes the current program.

Executes the current program from line 200. Preceding lines

are not executed unless a branching command sends control

back to a line before 200.

SAVE Abbr.sA

SAVE file name, device, end-of-tape flag

Stores a BASIC program on tape or disk. Although SAVE can be used to save

programs to cassette tape or disk, you should use this command to save to

cassette tape and use DSAVE to save to disk.

Parameters: "file name", device number, end-of-tape marker

1. You should include the name of the file. Enter the name in quotes. You can

use a variable name in place of the file name, but the variable must have a value. It

may be in parentheses (not in quotes). The only time this is likely to be useful is

when you store a program from within itself.

If you omit the file name in a SAVE to tape, the program is stored without a

name, which is never a good idea.

2. Device number can be either 1 (for cassette tape recorder) or the disk drive

number (8-11); no other numbers are allowed. The default value is 1, for cassette

recorder, so you do not need this parameter if you are storing onto a cassette tape

recorder.

3. If you are storing onto tape, you can add a final parameter to specify two

84 The BASIC Language

additional functions. If the final parameter is 1, the file cannot be relocated when

subsequently LOADed. If the final parameter is 2, an end-of-tape marker (rather

than an end-of-file) is written after the file on the tape. If the final parameter is 3,

these two features are combined. If it is omitted, or is 0, neither feature is

implemented.

Note: Files that cannot be relocated are LOADed into the memory locations

from which they were SAVEd, regardless of the status of the relocate flag in the

LOAD command. The BASIC pointers at $2D to $32 (45-50) may be adversely

altered by this event.

Saving to Tape

When you issue the SAVE command, the computer displays the message

PRESS PLAY AJSTD RECORD ON TAPE

Press the recorder buttons. Use the VERIFY command to make sure the

program was stored accurately.

Saving to Disk

When you issue the SAVE command, the disk light comes on. Do not remove the

disk until the program is saved and the red light goes off. You can use the

DIRECTORY command to view the disk directory and confirm that the file is

saved. Use the VERIFY command to make sure the program was stored

accurately.

Examples: SAVE "CIRCLE4" Stores file CIRCLE4 on tape.

SAVE "SHAPES9",8 Stores file SHAPES9 on disk.

SAVE "GAME",1, 2 Stores file GAME on tape with an end-of-tape

marker.

SCALE Abbr. scA

SCALE flag

Alters the scaling of the screen dots in graphic modes. Ordinarily the graphic

modes have the following matrix of screen dots that you can control and use in

drawings.

High-resolution modes 320 across and 200 down

Multicolor modes 160 across and 200 down

BASIC Version 3.8 Commands, Functions, and System Variables 85

The SCALE command lets you change these values to 1024 logical dots both

across and down in any mode.

In particular, this is useful when you are unsure whether a final program will

run in high-resolution or in multicolor mode. If you do all the drawing with

SCALE on, the figures will be the same size in either mode. No coordinate

transformations are required to move between high resolution and multicolor

SCALEd coordinates.

The SCALE command may be executed at any time and remains in effect until

canceled.

After you turn on scaling, you must adapt the drawing commands to the new

screen coordinates. For example, the center of the high-res screen is no longer

160,100. It is now 512,512.

To calculate SCALEd values from high resolution or multicolor coordinates,

use these formulas:

High-res rows 5.12 * row coordinate

High-res columns 3.2 * column coordinate

Multicolor rows 5.12 * row coordinate

Multicolor columns 6.4 * column coordinate

For example, to get the same circle as drawn without SCALE by

CIRCLE, 160,100,60,50, you can use the following lines with SCALE:

5 SCALE 1

10 A = 3.2 * 160: B = 5.1S * 100

20 C = 3.2 * 60: D = 5.12 * 50

30 GRAPHIC 2,1

40 CIRCLEA3,C,D

Parameter: on or off

Turn SCALEing on by using the parameter 1. Turn SCALEing off with the

parameter 0.

SCNCLR Abbr.sC

Erases the screen and returns the cursor to the top of the screen or text area.

Use SCNCLR to clear the screen in any mode, text or graphic.

SCRATCH Abbr. scR

SCRATCH file name, Ddrive, Uunit

Deletes a disk file permanently. References to the file are erased from the disk

86 The BASIC Language

and the file is flagged as SCRATCHed in the disk directory. The number of

blocks occupied by the SCRATCHed file are freed for use.

Once overwritten, SCRATCHed files are lost permanently from the disk.

When you issue a SCRATCH command in immediate mode, the computer gives

you a chance to double check before the command is executed. The question

ARE YOU SURE ? is displayed, and the computer does not proceed with the

SCRATCH operation until you respond. Type Y to proceed. Ifyou type anything

else, the SCRATCH operation is aborted. In program mode, the question is not

asked.

After you SCRATCH a file, you can verify that the file is deleted by displaying

the disk directory. Note the difference in total blocks free now that the file is

SCRATCHed.

Note: If a file is inadvertently SCRATCHed, it can sometimes be recovered

using direct-access disk commands. See Chapter 6 for a sample program.

Parameters: "file name", D drive number, U unit number

1. Include the name of the file you want to SCRATCH. The name must be in

quotes. It may contain wild cards, but take care to SCRATCH only files you no

longer need. You can check which files would be deleted before you execute the

SCRATCH by using the DIRECTORY command with the same file name

parameter.

2. Drive numbers are either 0 or 1. No other numbers are allowed. You can

omit this parameter if you are using a single disk drive, or if you are scratching a

file in drive 0 of a dual drive.

3. Unit number is an optional parameter. Use it only if more than one disk

drive is connected to your computer and you are using a device other than unit 8

in the SCRATCH procedure. You must precede the unit number with U, and the

unit number must be between 8 and 11. You can also type ON before U, but ON is

never required.

Note: The drive and unit number parameters and the file name can be speci

fied with a variable or expression in parentheses.

Examples: SCEATCH "GAME", Dl Removes file GAME from the disk in drive 1 of

a dual drive.

SCRATCH "PICKNUM" Scratches file PICKNUM.

SGN Abbr. sG

SGN (number)

Finds the sign—positive, negative, or zero—of the number. PRINT SGN(X)

displays one of the following three responses:

BASIC Version 3.5 Commands, Functions, and System Variables 87

1 X is positive

0 X is zero

-1 X is negative

These are the only possible outcomes; they reflect the number's sign, not its

value.

SIN Abbr. si

SIN (number)

The numeric function that finds the sine of the angle in parentheses. The angle

must be expressed in radians. For more information, see the Mathematical

Calculations section of Chapter 3.

Parameter: any number or numeric expression

Examples: PRINT SIHT(7r/S) Prints the sine of an angle of n over 2 radians

1 . (90 degrees).

PRINT SIlT(30*7r/180) Prints the sine of an angle of 30 degrees.

.5

SOUND Abbr. sO

SOUND voice, frequency value, duration

Plays a sound after the VOL command turns on the volume. There are two

voices in the computer, so you can play two-voice harmonies. One of the voices

can be set to make a range of nonmusical noise.

The SOUND command selects the voice, the note to be played, and the length

of time the note will last.

Parameters: voice number, note value, sound duration

1. There are three possible values for voice number:

1 plays notes in voice 1

2 plays notes in voice 2

3 plays noise in voice 2

The notes played by voice settings 1 and 2 are the same set. If you play different

notes in voices 1 and 2 together, the notes play simultaneously, producing

harmony. If you play notes in the same voice, they play one at a time.

88 The BASIC Language

The voice setting 3 is actually part of voice 2. Voice 3 plays only noise, not

musical notes.

2. The note value can be from 0 to 1023, although each value does not

correspond to a true musical note. The following note chart shows the values for

playing actual notes in four octaves. Middle G is 596. See Appendix F and

Chapter 3 for more information.

A

B

C

D

E

F

G

Low

Octave

7

118

169

262

345

383

453

Middle

Octave

516

571

596

643

685

704

739

High

Octave

770

798

810

834

854

864

881

Highest

Octave

897

911

917

929

939

944

953

3. The duration tells the computer how long to play the sound. Duration can

have a value from 0 to 65535. A value of 1 equals 1 / 60th of a second, so 60 equals

one second. A value of 0 immediately cuts off the current sound for that voice.

Examples: 10 VOL 7

15 REM PLAYA TWO-VOICE HARMONY

20 SOUND 1, 516, 60

30 SOUTH) 2, 345, 60

40 SOUND 1, 643, 60

50 SOUND 2, 262, 60

60 SOUND 1,739, 60

70 SOUND 2, 262, 60

NEW

10 VOL 7

15 REM PLAYA RANGE OP NOISE

20 FOR X = 600 TO 940 STEP 17

30 SOUND 3, X, 15

40 NEXT

SPC Abbr. sP

SPC (number)

Adds spaces to data output to a printer or to a file on disk or tape. SPC adds the

specified number of spaces from the end of the previous PRINT item to the

beginning of the next item. The number in parentheses can be from 0 to 255.

BASIC Version 3.5 Commands, Functions, and System Variables 89

When you are printing on the printer and an SPC forces a space in the last

character position on the line, a carriage return and line feed are automatically

performed. When this occurs, no spaces are printed on the next line regardless of

the number of spaces in the SPC function.

SPC Compared with TAB

The difference between SPC and TAB is that TAB always counts spaces from the

leftmost column while SPC counts spaces from the last PRINTed item. For

example, in the following program, TAB forces WORD to be printed five spaces

from the left side of the screen. SPC forces WORD to be printed five spaces from

the end of the previous PRINTed item, which was 12345.

10 PRINT "12345" TAB(5) "WORD"

SO PRINT "12345" SPC(5) "WORD"

30 PRINT "1234512345"

RUH

12345W0RD

12345 WORD

1234512345

SQR Abbr.sQ

SQR (number)

Finds the square root of the number in parentheses. The number cannot be a

negative, though 0 is allowed.

Parameter: any nonnegative number or numeric expression

SSHAPE Abbr. sS

SSHAPE string variable, corner coordinates, corner coordinates

Saves small rectangular parts of graphic screens in any graphic mode. These

graphic screen areas, which occupy the space ofup to 255 characters, are saved as

text-string values in memory. You use a text-string variable to identify the screen

area, just as you use a variable to identify any type of value.

Use SSHAPE and GSHAPE when you want to repeat a pattern on a graphic

mode screen or when you are using animation and want to move or erase the

pattern. After you save a screen area with SSHAPE, you can use the GSHAPE

command to display it anywhere on the graphic screen. When you retrieve the

area with the GSHAPE command, you give the screen location where you want

the area to be displayed.

Areas saved with SSHAPE are cleared when any CLR command occurs. See

Chapter 4 for more information on GSHAPE and SSHAPE.

90 The BASIC Language

Parameters: string variable, corner coordinates, opposite corner coordinates

1. The string variable is the name assigned to the graphic screen area saved

with the SSHAPE command. Retrieve the area with GSHAPE by using the same

string-variable name used in the SSHAPE command.

2. Give the coordinates for one corner of the shape you want to save.

3. Give the coordinates for the opposite (diagonal) corner.

Example: 10 GRAPHIC 1,1

SO FOR X = 0 TO 90STEP 10

30 CIRCLE, 160,100, 60,50,,,X,120

40 NEXT

45 REM SAVE AN AREA PROM THE DRAWING

50 SSHAPE A$, 90,60, 200,72

55 REM DISPLAYTHE SAVEDAREA IN REVERSE AT THE TOP OF

THE SCREEN

60 GSHAPEAl, 0,5,1

STatus Abbr. none

Reserved variable name that contains a value representing the status of the

most recent input/output operation. You can read the status of most peripheral

devices. PRINT ST to display the status of the last operation using a peripheral; 0

usually means the operation was successful.

The following chart shows the status codes for I/O operations. See Chapter 6,

which contains detailed information about input/output operations.

Bit Value Tape I/O Serial I/O RS232I/O

0

1

2

3

4

5

6

7

1

2

4

8

16

32

64

128

Short block

Long block

Read error

Checksum error

End of file

End of tape

Timeout write

Timeout read

—

—

—

—

End or identify

Device not present

Parity error

Framing error

Receiver buffer overrun

Receiver buffer empty

Clear to send missing

—

Data set ready missing

Break detected

For the 1541 disk drive, the end or identify bit set usually means the end of file

has been reached. Also, for a VERIFY, bit 4 set means a verify error was found.

BASIC Version 3.8 Commands, Functions, and System Variables 91

STEP Abbr. stE

Tells the computer how much to add to the counter variable in a FOR. . . TO

. . . NEXT loop. See FOR . . . NEXT.

STOP Abbr.sT

Suspends the execution of the current BASIC program and sends the com

puter to immediate mode so you can debug. Any OPEN files stay OPEN after a

STOP, and variables retain the values they had when the program was

interrupted.

When STOP executes, the computer displays the message BREAK IN LINE

line number, just as if you pressed the STOP key. You can use the CONT

command to restart the program at the line following the STOP command as

long as you follow the CONT restrictions: do not make program changes. You

can also use GOTO to restart the program. Type GOTO and the line number

where you want to resume.

Use END when you do not want the BREAK message.

STR$ Abbr.stR

STR$ (number)

Translates the number in parentheses to a text string. If the number is negative,

a minus sign precedes it in the string. A leading blank space is generated if the

number is positive. A trailing blank space is not generated in either case.

Example: 10 X = 67: Y = -2S.4

SO X$ = STR$(X)

30 Y$ = STR$(Y)

40 PRI1JTX$;Y$

RUN

67-22.4

SYS Abbr.sY

SYS memory location

Executes a machine-language program at the memory location named, which

can be anywhere in RAM or ROM. For more information, see Chapter 5.

You can put a SYS command in a BASIC program to combine the BASIC

program with a machine-language program. Ifyou do this, the machine-language

program is considered a subroutine, and you must end the machine-language

program with an RTS (return from subroutine) instruction. This RTS instruction

sends program control back to the BASIC program line that follows the SYS

command.

98 The BASIC Language

Parameter: machine-language program address

The address can be a number between decimal 0 and 65535 (hexadecimal

$0000-$FFFF), or a numeric expression standing for a number between 0 and

65535.

Example: SYS 1525

TAB

TAB (number)

Turns on the built-in software. This is part of the definition

for function key 1.

Abbr. tA

Example:

Used in a PRINT command to move the specified number of spaces to the right

from the left side of the screen or page. A TAB function is similar to a tab key on a

typewriter. The number in parentheses can be from 0 to 255. Values above 39

refer to subsequent lines.

TAB can appear anywhere in a PRINT command, including between two

PRINT items. No punctuation is required to set off a TAB function. Regardless

of where TAB appears in the PRINT command, TAB always counts spaces from

the leftmost column of the current line.

TAB Compared with SPC

The difference between TAB and SPC is that TAB always counts spaces from

the leftmost column while SPC counts spaces from the last PRINTed item. For

example, in the following program, TAB forces WORD to be printed five spaces

from the left side of the screen. SPC forces WORD to be printed five spaces from

the end of the previous PRINTed item, which was 12345.

10 PRINT "12345" TAB(5) "WORD"

20 PRINT "12345" SPC(5) "WORD"

30 PRINT"1234512345"

RUN

12345W0RD

12345 WORD

1234512345

TAN

TAN (number)

Abbr. none

Numeric function that finds the tangent of the angle in parentheses. The angle

must be expressed in radians. If the error message DIVISION BY ZERO appears

after a TAN function, TAN has overflowed.

For more information, see the Mathematical Calculations section of Chap

ter 3.

BASIC Version 3.5 Commands, Functions, and System Variables

Parameter: any number or numeric expression

93

Examples: PRIKTT TAN(tt/3)

1.73205081

Prints the tangent of an angle of ir over 3

radians (60 degrees).

PRINT TAET(30*7r/180) Prints the tangent of an angle of 30 degrees.
.577350269

TI Abbr. none

Reserved system variable that represents the current value of the hardware

interval timer, which is also called the jiffy clock. The interval clock starts at zero

each time you turn on the computer, and it is updated every 1 / 60th of a second as

long as the computer is on (up to 24 hours). TI is stated in 60ths of a second; to

find out the time in seconds, divide TI by 60. For more information, see SETTIM
in Chapter 5.

The interval clock is not on during many input and output operations.

You can use the value ofTI (that is, -TI) to seed random number generation in
the RND function.

TI$ Abbr. none

Example:

Reserved system variable that represents the current value of the hardware

interval timer, which is also called the jiffy clock. The interval clock starts at zero

each time you turn on the computer, and it is updated every 1 / 60th of a second as

long as the computer is on (up to 24 hours). TI$ is stated in six digits: the first two

represent the current hour, the next two represent the current minute, and the last

two represent the current second.

The interval clock is not on during many input and output operations.

You can reassign the value of the clock by assigning a six-digit value to TI$.

When you reassign TI$, you must use six digits in quotation marks. If you type

any more or fewer digits, the command is rejected, and the message ILLEGAL

QUANTITY ERROR is displayed.

The following little program shows that TI and TI$ both hold the current value

of the interval clock, each in its own way.

10 PREKTT TI/60

20 PRINT TI$

30 TI$="000000"

RUN

106.833333

000146

Shows the number of seconds the computer has been

on. Shows the time the computer has been on in hours

(00), minutes (01), and seconds (46).

94 The BASIC Language

Line 30 resets the clock. Note the changes in the values of TI and TI$ when the

program is run again just after resetting.

RUN

1.65

000001

THEN Abbr. tH

Tells the computer what to do when an IF condition is true. See IF. . .THEN. . .

ELSE.

TRAP Abbr. tR

TRAP line number

Detects errors during execution of a BASIC program so that execution is not

aborted. When TRAP finds a program error, the error flag is set, and execution

passes to the line named in the TRAP command. This line can contain a routine

to help diagnose and solve the error.

After an error has been TRAPped, you can examine or display the following

information about the error:

Information Display Command

Number of the line that contains the error PRINT EL

Error message number PRINT ER

Error message that identifies the error PRINT ERR$(ER)

These commands can be included in the program at the line you name in the

TRAP command.

Return to normal program execution after a TRAP by issuing a RESUME

command. Never return by using a GOTO.

Parameter: line number or 0

The line number tells the computer where in the program to go if an error is

found. A value of0 for a TRAP command turns off the error-trapping function in

the program.

TROFF Abbr. troF

Turns off the built-in error-tracing functions that are turned on by the TRON

command.

BASIC Version 3.S Commands, Functions, and System Variables 95

TRON Abbr. trO

Turns on built-in error-tracing functions. The tracing function displays the line

number on each line in the program as the program executes. This function helps

you locate a line that is causing program error.

UNTIL Abbr.uN

Sets a closing condition in a DO . . . LOOP sequence. When you include an

UNTIL clause in a DO loop, the loop executes until a condition is met. See DO.

USR Abbr. uS

USR (number^

This is a BASIC function (i.e., it is invoked by setting some variable equal to it).

USR goes immediately to a user-callable machine language subroutine whose

starting address is contained in memory locations 1281 and 1282. Before you can

use the USR function to access a machine-language subroutine, you must POKE

the subroutine address to memory locations 1281 and 1282. If you do not, the

execution of a USR function aborts the program and displays an ILLEGAL

QUANTITY ERROR message.

The number in parentheses is a variable or formula you are sending to be used

in the machine-language subroutine. It is stored in floating-point accumulator 1.

At the end of the subroutine, the value in floating-point accumulator 1 is returned

to the BASIC program as the value of USR. Using a machine-language subrou

tine is much like using a BASIC user-defined function: you send a value to be

used, and it sends back to the main program the resultant value. USR is a window

between BASIC and machine language. See Chapter 5 for more information.

VAL Abbr.vA

VAL (string)

Converts a text-string number to a numeric value when you have a number in a

text-string variable instead of a numeric variable. For example, you might input a

phone number as a text-string variable, and then want to use it as a number to dial

your automodem.

If the text=string value contains characters that are not numbers or acceptable

parts of numbers (e.g., minus signs, decimal points, or E, which connotes scien

tific notation), the rest of the string is not converted. If the first character is not an

acceptable character, VAL returns a zero.

Example: 10 GETKEYA$ One key is gotten from the

20 IP VAL(A$)<>0 THEN G0SUB 80 keyboard. If it is a digit from

30 END 1 to 9, the subroutine is

80 PRINT"THE DIGIT IS ";A$ executed.

90 RETURN

96 The BASIC Language

VERIFY

VERIFY file name, device, relocate

Abbr. vE

Compares the current program to a program on tape or disk. The verification

procedure assures you that the program you saved was stored accurately. Use

VERIFY right after you save a program to confirm accurate storage. This is very

important for saving to tape, but is not as important for disks since they are more

reliable.

You can also use VERIFY as a shortcut in positioning a tape to after a given

file. Just start at the beginning of the tape and VERIFY using the name of the file

you want to follow. The computer finds the designated file, tells you the programs

do not match, and stops just after it, ready for your next operation.

Parameters: "file name", device number, relocate flag

1. The file name is optional for tape files, required for disk files. If omitted, the

computer verifies the next program on tape.

2. The device number is 1 for cassette tape recorder or the device number for

the disk drive (8-11). The default is 1, so you can omit this parameter if you are

using a cassette recorder. The device number for the disk drive is required.

3. The relocate flag can be 0 (verify the program at the beginning of the BASIC

program area) or 1 (verify the program at the memory location where the

program was saved). This parameter is usually used only with machine-language

programs. Its value can be overridden if tape files are SAVEd in a certain way.

See SAVE.

Examples: VERIFY

VERIFY "BOXES",8

VOL

VOL level

Compares the current program to the next pro

gram on tape.

Compares the current program to the program

BOXES stored on disk.

Abbr. vO

Sets the volume for sounds made by the SOUND command. A VOL command

must be issued before any SOUND command can be audible. The volume you set

affects all voices.

You do not have to set the volume for each SOUND command. The last

volume setting is in effect until you issue another VOL command.

Parameter: volume level

The volume level setting can be from 0 to 8. The highest possible volume is 8.

You can turn off the volume with a level setting of 0.

BASIC Version 3.8 Commands, Functions, and System Variables 97

The volume set by the VOL command is relative only to other VOL com

mands. You can make one sound louder or quieter than another by changing the

VOL setting in between. The overall volume is controlled by your monitor or TV.

Example: VOL 2 Sets a low volume

WAIT Abbr. wA

WAIT location, AND value, XOR value

Pauses the execution of the BASIC program until the value of the specified bits

in the given memory location equals a designated value.

Parameters: memory address, ANDed value to be checked, XORed value

1. The memory address is the location whose contents are to be checked.

2. The computer ANDs this value, which must be between 0 and 255, to the

value in the memory location. The memory location is repeatedly checked until

the operation yields a value that is not 0. When this happens, the program

continues with the command following WAIT.

3. This parameter is optional. If it is present, this value, which must be between

0 and 255, is XORed with the memory location contents before the ANDing takes

place. In other words, this parameter can be used to invert the comparison bits.

The location checked by a WAIT command must be changed by some external

event, such as a button on the tape recorder being pressed (see Chapter 6).

Otherwise, this command results in an infinite loop that can be exited only with

the reset button. Should this occur, remember to hold down the RUN/ STOP key

when pressing the reset button if you want to keep your program intact. Exit the

monitor by typing X and RETURN.

WHILE Abbr. wH

Sets a condition for the continuation of a DO... LOOP. A WHILE clause in a

DO loop makes the loop execute as long as the condition is met. See DO.

2 The Built-in Software

This chapter explains all the commands for each built-in program. Separate

sections cover the commands for the word processor, the spreadsheet, and the file

manager. In addition, the instructions for formatting printed output are

explained in a separate section of the chapter. Some commands can be used in

more than one program. Next to each command is one or more abbreviations

that indicate which programs accept the command. The abbreviations used are

WP (word processor), SS (spreadsheet), and FM (file manager).

Note: Text that would be displayed in reverse mode on your screen is shown

boxed in this book.

Switching Between the Programs

When you first turn on the built-in software by pressing function key Fl and the

RETURN key, the word processor comes up automatically* To switch to one of

the other built-in programs, you must enter command mode and issue one of the

following commands:

Command

tw

tf

tc

gr

Destination

word processor

file manager

spreadsheet

graph generator (accessed through the spreadsheet only)

Command Mode

Many commands in each of the built-in programs are issued in command mode,

which means you must enter command mode before you can issue the command.

To enter command mode, press the Kg and C keys together. The status line

98

Formatting Disks 99

displays the > sign to indicate that you are in command mode.

Formatting instructions are entered in reverse mode, not command mode.

Also, spreadsheet entries and text in the word processor are not made in com

mand mode.

Changing Screen Colors

When you first turn on the built-in software, the word processor work area

displays pale yellow characters on a black screen. The current cursor position is

white. If you want to use a different color combination, issue a COLOR com

mand in the spreadsheet. You can change the color of the screen only from the

spreadsheet.

Only the screen background color is selected with the COLOR command;

other colors are selected automatically. To select a new color, use the numbers

from Table 2-1.

1. Switch to the spreadsheet (press 88 C, then TC, and press RETURN).

2. Enter command mode again (press £§ and C).

3. Issue the COLOR command (type COLOR and the number of the color you

want to be the screen background. Type a semicolon at the end of the

command).

When you switch to another program, the screen color change remains in

effect.

Table 2-1. Screen Background Colors and Numbers

Background

Black

Gray

Red

Cyan

Purple

Green

Blue

Yellow

Characters

Yellow/white

Black/white

Yellow/white

Black/white

Black/white

Black/white

Cyan/white

Black/white

Number

0

1

2

3

4

5

6

7

Background

Orange

Brown

Yellow-green

Pink

Blue-green

Light blue

Dark blue

Light green

Characters

Yellow/ white

Yellow/white

Black/ white

Yellow/white

Black/white

Black/white

Cyan/ white

Black/white

Number

8

9

10

11

12

13

14

15

Formatting Disks

Work from any built-in program can be stored on a disk (graphs must be

transferred to the word processor and stored as word processor files). Before you

can use a disk for storage, however, the disk must be formatted. Formatting

100 The Built-in Software

prepares the disk for use by dividing it into sectors compatible with your disk

drive and by establishing a disk directory.

There are two ways to format the disk:

1. You can format the disk iron BASIC by using the HEADER cornmaad. Use

HEADER if you have not yet turned on the built-in software and you know

you will want to store your work on a disk. The HEADER command is

explained in Chapter 1.

2. You can format the disk from within the built-in software by using the

FORMAT command. The FORMAT command can be issued only from the

spreadsheet program. The FORMAT command is explained in Section 3 of

this chapter.

Now: Do not store file manager files on a disk that contains any other type of

file, including word processor or spreadsheet files. Each file manager file should

have its own disk.

Drawing Bar Graphs

The built-in graph generator is actually a part of the spreadsheet. The graph

generator has no commands of its own. You create the graphs by entering

numbers in the spreadsheet, and you can transfer the graphs to the word proces

sor to print them as part of a document.

To create bar graphs, follow these steps:

1. If you want to keep a copy of work in either work area, use the SF (Save File)

command to store the work on a disk. Clear the word processor and spread

sheet work areas with the CM (Clear Memory) command.

2. Switch to the spreadsheet (Q C, then TC and RETURN).

3. Type the numbers for the graph in the first row of the spreadsheet work area.

Be sure to type numbers only in the top row.

4. Issue a MAP command to tell the computer you want to send the graph to the

word processor.

5. Switch to the graph generator (g C, then GR and RETURN). The graph is

automatically drawn using the numbers you entered in the spreadsheet work

area.

6. Press RETURN to return to the spreadsheet.

7. Switch to the word processor (g C, then TW and RETURN). The graph is

displayed at the top of the word processor work area. When the graph is in the

word processor, you can make any needed changes to the graph.

Section 1. Word Processor Commands 101

Drawing Point Graphs

The graph generator creates only bar graphs, but you can edit the graphs to make

them point graphs. Point graphs show only the top value from each graph column

whereas bar graphs show a solid bar for each column. You can create point

graphs simply by erasing all the # signs in the bar graph except for the top one.

After you edit the graph to erase all but the top # sign, you may want to change

the # signs to some other symbol, such as the * sign or the % sign. To do this, use

the RE (search and replace) command to substitute other symbols for the # sign.

Section 1. Word Processor Commands

You can use the word processor to write any type of document. You can transfer

data from any of the other programs and print this information as part of a word

processor document. The word processor contains a variety of useful, time-saving

features.

The word processor work area is 77 columns across and 99 lines long. Ifyou are

writing a document longer than 99 lines, you can link files together with the

LINKFILE instruction and print the linked files as though they were one contin

uous file.

The following commands let you control the word processor work area and

manipulate the text to suit your needs. Commands for formatting printed output

are explained in Section 2.

Key Commands

£§ and C Enter command mode.

Q' and Q Repeat the previous command.

IS and @ Delete a RETURN key symbol.

CONTROL and 9 Turn on reverse mode.

CONTROL and 0 Turn off reverse mode.

CONTROL and = Set a tab. Delete a tab when pressed in a tabbed

column.

SHIFT and = Move the cursor to the next tabbed column.

Cursor Control Keys

Fl Moves to column 1 of the following line.

102 The Built-in Software

F2 Moves to column 41 of the following line.

HOME Moves to line 1 in the current column.

CLEAR Moves to line 22 or the bottom line reached in the current

session. The cursor remains in the current column.

Command Mode Commands

CA WP, FM, SS

Displays a listing of all the files on the current disk. The file catalog includes the

following information:

File names

File lengths (stated in blocks)

Blocks remaining on the disk

Spreadsheet files have a .c suffix appended to each file name. Word processor

files have no suffix. File manager disks (each file should have its own) show only

their name and blocks free. The total blocks free on the disk shows you how much

space remains out of the blank disk total of 664.

The catalog information is displayed on a separate screen. The work area is not

affected; you can display a disk catalog at any time. When you finish looking at

the catalog and press RETURN, the intact work area is returned to the screen.

CB WP

Lets you create a text block of up to 16 lines. After a block is created, you can

move it as a whole to any location in the work area. You can also erase the block.

To create a text block, follow these steps:

1. Move the cursor to the last line of the block.

2. Use the SP (Set Pointer) command to set the end of the block.

3. Move the cursor to the first line of the block.

4. Issue the CB (Create Block) command to create the block.

After the block is created, you can insert it elsewhere by moving the cursor to

the new location and issuing an IB (Insert Block) command. You can erase a

block with the DB (Delete Block) command.

Section 1. Word Processor Commands 103

If you want a text block to appear in more than one place in the work area,

create a block, insert it where you want it to be repeated, and leave the original

block intact at its original location. You can insert the block in as many locations

as you like; you are never required to erase the original block.

CM WP, SS

When issued in the word processor, clears the word processor work area, but

does not affect the other work areas. After you issue a CM command, the word

processor work is lost unless you save it first.

After you issue a CM command, the computer displays a question to double

check your intentions. In the word processor, the question is

CLEAR ALL Y/N?

In the spreadsheet the question is

ARE YOU SURE Y/N?

The questions are the same: Are you sure you want to clear the current work

area? Because all the information cleared from the work area will be lost unless

you save it first, this question gives you a last chance to change your mind before

the work area is erased.

CP WP

Cancels all pointers set by the SP (Set Pointer) command. Whereas EP (Erase

Pointer) deletes only one pointer at a time, CP (Clear Pointer) erases all pointers

currently in the work area. The cursor can be anywhere in the work area when you

issue a CP command.

CT WP

Gets rid of all the tabs on the screen at once. After you issue a CT (Cancel Tab)

command, all * signs, which mark tabbed columns, are erased from the bottom
line of the work area.

Tabs are set by the CONTROL and = keys. You can also use the CONTROL
and = keys to cancel a single tab.

DB WP

Lets you erase a block of text. After it is erased, the text beneath the block is

moved up to fill the space left by the deleted block.

104 The Built-in Software

To set the boundaries of a block for deletion, follow these steps:

1. Move the cursor to the last line of the block.

2. Use the SP (Set Pointer) command to set the end of the block.

3. Move the cursor to the first line of the block.

4. Issue the DB (Delete Block) command to delete the block.

If you want to move the block elsewhere before you delete it, use the CB

(Create Block) command to create the block, and the IB (Insert Block) command

to insert the block at a new location. Then follow the preceding instructions to

delete the block.

DF WP, SS

Removes a file permanently from a disk. Use the DF (Delete File) command

only when you no longer want to keep a copy of the file.

To delete a file you previously saved on disk, issue the DF command and type

the name of the file when the prompt DELETE FILE: is displayed on the

command line at the bottom of the work area. When you press RETURN, the

disk takes a few seconds to remove the file from the disk. This command operates

like the SCRATCH command in BASIC.

You can verify that the file has been deleted by viewing the disk catalog, which

you access by issuing a CA command.

DL WP

Lets you delete the line of text where the cursor is currently located. You can

delete a line of text anywhere in the work area. After you delete a line, the lines

beneath are moved up to fill in the space left by the deleted line.

To delete a line, move the cursor to the line you want to erase and issue the DL

(Delete Line) command. You can delete more than one line by repeating the DL

command, by issuing a Q Q command after a DL command, or by using the DB

(Delete Block) command to erase a group of lines.

EP WP

Cancels a pointer set by the SP (Set Pointer) command. Whereas CP (Clear

Pointers) removes all pointers currently set in the work area, EP (Erase Pointer)

erases only one.

To use EP, move the cursor to the line where the pointer you want to erase is

located, then issue the EP command. The pointer on the current line is deleted,

but other pointers in the work area are unaffected.

Section 1. Word Processor Commands 105

FU WP,SS

Cancels half-screen mode (see the HA command) and returns the screen to a

full display of the word processor work area (when issued in the word processor).

The FU (FUll screen) command has no effect unless the computer is in half-screen

mode, which is turned on by the HA command. Issuing an FU command does not

affect the contents of either the word processor or the spreadsheet.

To return to full-screen word processing, you must be in the word processor

when you issue an FU command. If you issue the command in the spreadsheet,

you will return to the full-screen spreadsheet. If this happens, just issue a TW

command to switch to the word processor.

HA WP, SS

Divides the screen in half so that partial work areas from the spreadsheet and

word processor programs can be displayed simultaneously. In half-screen mode,

12 lines from the word processor are displayed in the top half of the screen, and

seven rows from the spreadsheet are shown in the bottom half of the screen.

Half-screen mode has several uses:

1. When you want to transfer data from the spreadsheet row by row with the

MAP command. MAP lets you transfer data manually, and half-screen mode

lets you see both work areas while you use MAP.

2. When you need to refer to spreadsheet data while you are writing a word

processor document, but do not want to transfer the data.

3. When you need to get data from the word processor for use in the spreadsheet.

You cannot transfer data from the word processor to the spreadsheet, but

half-screen mode lets you view any part of the word processor work area while

you are working in the spreadsheet.

When you first issue the HA command in the word processor, the screen is split

in half, but the spreadsheet is not displayed in the work area. To bring up the

spreadsheet, issue a TC command. The spreadsheet is then displayed on the

bottom half of the screen, and the cursor is under spreadsheet control.

Cursor Control

Although you can see partial work areas from both programs, you can use only

one program at a time. The cursor can move around only half of the screen, and

the keyboard is under the control of the current program. You cannot type any

information into the other program. To switch between programs, you must still

issue TC and TW commands. The status line at the bottom ofthe screen indicates

which program currently controls the keyboard.

106 The Built-in Software

When you are in half-screen mode, you can still view any segment of the whole

work areas of either program. Just use the cursor keys and other cursor-

movement keys to display other parts of the work area on the half screen.

IB WP

Lets you insert a text block anywhere in the work area. To use the IB (Insert

Block) command, you must first use the CB (Create Block) command to set the

limits of the block. Follow these steps:

1. Move the cursor to the last line of the block.

2. Use the SP (Set Pointer) command to set the end of the block.

3. Move the cursor to the first line of the block.

4. Issue the CB command to create the block.

5. Move the cursor to the line where you want to insert the block.

6. Issue the IB command to insert the block.

While the block is being moved, the message WORKING is displayed on the

status line at the bottom of the screen. When the block is inserted in the new

location, the block also remains intact in its original location. Use the DB (Delete

Block) command to erase the original block unless you want the block to appear

in both places.

You can insert the block repeatedly when you want it to appear in several

places. Just move the cursor to the next location and issue the IB command.

ID WP, SS

Initializes the current disk. Before you use the ID (Initialize Disk) command,

make sure the drive is on and the disk is inserted.

You can initialize the disk at any time. Your current work is not affected, nor

are any files on the disk. Whenever you change disks, you should issue the ID

command after you insert the second disk so it is initialized.

IL WP

Lets you insert a blank line between lines of text anywhere in the work area.

The new line is inserted above the line where the cursor is currently located. The

lines beneath are not affected; they are moved down one line to make room for the

new line.

To insert a line, move the cursor to the line where you want the blank line

added and then issue the IL (Insert Line) command. You can insert more than one

Section 1. Word Processor Commands 107

line by repeating the IL command, by issuing a gg Q command after an IL

command, or by creating a block (CB command) of blank lines and using the IB

(Insert Block) command to insert the block.

LF WP, SS

Lets you bring a file stored on disk into the work area. When you issue the LF

(Load File) command, the computer displays the message LOAD FILE: on the

status line at the bottom of the screen. Type the name of the file you want to load.

When you load a file with the LF command, the work area is cleared before the

file is displayed. The loaded file is displayed at the top of the work area regardless

of the current location of the cursor. When you want to load the file at some other

location in the work area, use the MF (Merge File) command.

Because the LF command always clears the work area before the file is loaded

at the top of the work area, any document in the work area is lost unless you saved

it before you issued the LF command. If you want to retain the document in the

work area after a file is loaded, use the MF command to load the file.

Error Messages

If the message FILE NOT FOUND>» is displayed on the status line after you

issue an LF command, the disk in the drive does not contain the file whose name

you typed in response to LOAD FILE. Either the wrong disk is in the drive or you

misspelled the file name when you typed it. Check the disk catalog to make sure

the file exists on that disk; then reissue the command. If the file does not exist on

the disk and you are sure you have the right disk, most likely the file was never

saved. If you must switch disks, be sure to issue the ID command after doing so.

If the message NO FILE! is displayed on the status line, the disk drive is not

connected, or is not turned on, or no disk is inserted in the drive.

MF WP

Lets you bring a file stored on disk into the work area. The difference between

LF (Load File) and MF (Merge File) is that LF clears the work area before

bringing up the file, whereas MF does not affect the work area as long as you

move the cursor past the work you want to keep.

When you issue the MF command, the computer displays the message LOAD

FILE: on the status line at the bottom of the screen. Type the name of the file you

want to load.

When you load a file with the MF command, the loaded file is displayed

beginning at the current location of the cursor. Any work in the work area above

the cursor location is not affected, which means you can combine your current

document with a stored document. Any work below the cursor location is lost

108 The Built-in Software

and is replaced by the merged file. When you want to clear the work area and load

the file at the top of the work area, use the LF command.

If you move the cursor to a line far enough down that there is not enough room

in the work area to hold the current document and the file you want to load, only

as many lines from the loaded file as can fit in the work area are loaded. The rest

of the stored document is not loaded. No message is generated to inform you of

the partial load.

Error Messages

If the message FILE NOT FOUND>» is displayed on the status line after you

issue an MF command, the disk in the drive does not contain the file whose name

you typed in response to LOAD FILE. Either the wrong disk is in the drive or you

misspelled the file name when you typed it. Check the disk catalog to make sure

the file exists on that disk; then reissue the command. If the file does not exist on

the disk and you are sure you have the right disk, most likely the file was never

saved. If you must switch disks, be sure to issue the ID command after doing so.

If the message NO FILE! is displayed on the status line, the disk drive is not

connected, or is not turned on, or no disk is inserted in the drive.

*P WP

Prints a copy of the document currently in the word processor work area. You

can use *P (Print) only to print single work area documents. Use PR to print

linked files.

Before you issue a *P command, make sure the printer is connected and turned

on and that the paper is properly inserted.

Note: When you want to print data from the spreadsheet or the file manager,

you must first transfer the data to the word processor.

Note: To abort a printout, press the RUN/STOP key until the PRESS

RETURN prompt appears; then turn off your printer.

PR WP

Lets you print a copy of a linked series of word processor files. When docu

ments contain the LINKFILE command, you can use the PR (PRint) command

to print the linked files as an uninterrupted series. When you want to print only

one file, use the *P command, not the PR command. You cannot use the *P

command to print linked files.

The PR command is a complex command that performs several tasks; it saves,

loads, and prints files. Linked files are loaded and printed automatically.

Section 1. Word Processor Commands 109

How the PR Command Saves Files

When you issue a PR command, the document currently in the work area is saved

automatically with the file name ..tw, which represents a Temporary Workspace.

After the current document is saved, the message LOAD FILE: is displayed. You

type the name of any file you want to print, and the file is loaded and printed

automatically. You can load and print any word processor file.

After all the linked files have been printed, the ..tw file is reLOADed so you can

continue editing.

How the PR Command Prints Linked Files

When you use the PR command to print linked files, the computer considers the

linked files as one file. Formatting commands in a file are also in effect in linked

files unless you change the format.

When a LINKFILE command appears in a file being printed by the PR

command, the computer automatically loads and prints the linked file as soon as

the current file is printed. You do not have to issue any commands during the

printout of linked files. You can link as many files as you like; the computer

continues to print linked files until no LINKFILE command is found.

You can link files on different disks and print them together if you include a

PAUSE command just above the LINKFILE command. PAUSE stops the

printout until you press RETURN. When the file pauses, remove the disk, insert

the second disk, and press RETURN to resume printing.

RE WP

Searches the current document to find every instance of a group of characters

you specify. The characters are replaced with other characters that you specify.

For example, you can search a report for the phrase "due to the fact that" and

replace it with the word "because" every time the phrase appears.

The search-and-replace operation is not entirely automatic. When you use the

search-and-replace operation, the computer stops each time the searched string is

found and gives you the option to abort the search. If you choose to continue, the

computer gives you the option to replace the string with the replacement string

you typed when you issued the command. This manual replacement protects you

from inadvertently making replacement errrors.

To use the search-and-replace feature, follow these steps:

1. Move the cursor to the top ofthe area you want to search. Ifyou do not want to

search the top of the document, just position the cursor past this part. If you

fail to move the cursor above the area to be searched, the replacements cannot
be made.

110 The Built-in Software

2. Issue the RE (REplace) command.

3. Type the characters you want to be replaced when the prompt SEARCH: is

displayed on the status line. You can search and replace a single character or

any string of characters up to 29 characters in length.

4. Press RETURN and type the characters you want to become the replacement

string when the prompt BECOMES: is displayed on the status line. The

replacement string can be any string of characters up to 28 characters in length.

The replacement string does not have to be the same length as the string being

replaced. You can replace a string with a blank.

5. Press RETURN. The computer will find the first instance of the searched

string and highlight it in reverse. The message CONTINUE Y/N is displayed

on the status line.

6. Press Y to continue the procedure. Pressing Y at this point does not replace the

string. If you press Y, the message REPLACE Y/N? is displayed on the status

line. If you press N, the search-and-replace operation is aborted.

7. Press Y to execute the replacement. The string is replaced and a pointer (<) is

automatically set to mark the line. The computer moves to the next instance of

the searched string and displays the message CONTINUE Y/N?. Repeat steps

6 and 7 until all instances of the string are found or until you abort the

search-and-replace operation.

If you press N in response to the REPLACE prompt, the current instance of

the searched string is not replaced. The computer moves to the next instance of

the searched string and displays the message CONTINUE Y/N?. Repeat steps

6 and 7.

SF WP, SS

Lets you store the current word processor document on a disk. To store a file,

follow these steps:

1. Insert a formatted disk. Use the ID (Initialize Disk) command to initialize it.

2. Issue the SF (Save File) command.

3. Type a file name when the message SAVE FILE: is displayed on the status line.

You must give each file a name. The file name must be between 2 and 16

characters long.

4. If a file by the given name already exists on the disk, REPLACE Y/N is
displayed. Type Y in response to REPLACE Y/N unless you want to keep the

old copy of the file. In this case, type N and save the current file with a different

name.

Section 1. Word Processor Commands 111

If you do not have a formatted disk, insert a new disk, switch to the spread

sheet, and issue a FORMAT command before you issue the SF command.

You can verify that the file is stored by issuing a CA command, which displays

a list of all files on the disk. Make sure the number of blocks assigned to the file is

greater than zero. If the number of blocks is zero, the file was not properly saved.

Press RETURN and issue the SF command again.

SP WP

Defines the end of a block of text. Use a pointer to set the end of a text block for

insertion or deletion or to prevent text beneath the pointer from moving when

you use the INSERT or DELETE keys.

To set a pointer, move the cursor to the line where you want to locate the

pointer and then issue the SP (Set Pointer) command. The pointer remains in

effect until canceled. You can cancel a single pointer with the EP command, or

cancel all the pointers in the work area with the CP command.

Using a Pointer to Prevent Text from Shifting

When you move the cursor into the body of the document and then use the

INSERT or DELETE keys, all following lines move too. Generally you would

want only the rest of the paragraph to move when you press INSERT or

DELETE. To prevent subsequent paragraphs from shifting, set a pointer at the

end of the paragraph you want to work on. Then when you insert or delete within

the paragraph, the rest of the document will not be affected.

SR WP

Searches the current document to find every instance of a group of characters

you specify. Unlike the RE command, the SR (SeaRch) command does not

replace the characters that are being searched. Instead, the searched string is

simply highlighted. Use SR to find a word quickly, to search for a string you want

to replace with different strings each time it appears, or to look for misspellings.

When you use the search operation, the computer stops each time the searched

string is found and gives you the option to abort the search.

To use the search feature, follow these steps:

1. Move the cursor to the top of the area you want to search. If you do not want to

search the top of the document, just position the cursor past this part. If you

fail to move the cursor above the area to be searched, the search cannot be

made.

2. Issue the SR command.

118 The Built-in Software

3. Type the characters you want to search when the prompt SEARCH: is dis

played on the status line. You can search for a single character or any string of

characters up to 29 characters in length.

4. Press RETURN. The computer will find the first instance of the searched

string and highlight it in reverse. The message CONTINUE Y/N is displayed

on the status line.

5. Press Y to continue the procedure. You cannot change the string if you choose

to continue. The computer will simply continue finding and highlighting

instances of the searched string. If you want to make a change to the searched

string, you can abort the search by pressing N. After you make the change, you

can start the search again by reissuing the SR command.

TC WP, FM

Lets you switch to the spreadsheet program. You can issue the TC (To the

Calculator) command at any time. The word processor work area is not affected

when you leave the program. Use the TW command to switch back to the word

processor.

When you are using the half-screen mode, use TC to switch control to the

spreadsheet half of the screen.

TF WP, SS

Lets you switch to the file manager program. You can issue the TF (To the File)

command at any time. The word processor work area is not affected when you

leave the program. Use the TW command to switch back to the word processor.

Section Z. Instructions for Formatting Printed Documents

The following instructions let you design the format ofdocuments you print on a

printer. These instructions do not affect the work as it is displayed on the screen.

Although the instructions themselves are embedded in the document, they do not

appear in the printed version of the work.

Formatting instructions are entered differently from commands typed in

command mode. The formatting instructions are always typed in reverse mode,

and they are always typed within the text, not on the status line. To enter a

formatting instruction, follow these steps:

1. Turn on reverse mode by pressing CONTROL and the 9 key.

Section 8. Instructions for Formatting Printed Documents 113

2. Type the formatting instruction in lowercase letters. Always type a semicolon
(;) at the end of each formatting instruction. If you are typing more than one

formatting instruction together, separate the instructions with a colon (:). If
you include the colon, you must also include the semicolon. For example, if
you use both an LMARG and an RMARG instruction on the same line, type
them like this:

lmarglO;:rmarg65;

Note: Text that would be displayed in reverse mode on your screen is shown
boxed in this book.

3. Turn off reverse mode by pressing CONTROL and the 0 key.

The formatting instructions are explained in alphabetical order. This section
includes the six formatting instructions for printing data from file manager
records.

Format Defaults

Some formatting instructions have default values, but most do not. The following
are default values for printed formats:

Paper size 66 lines (11 inches)

Page length 60 lines per page

Left margin 0

Right margin 77

Justification Left only

Word wrap On

ASC

ASCII instruction lets you send a CHR$ control code directly to the printer.

You can tell a printer to print a word in boldface type, underline a heading, or

print a special character. The CHR$ control values depend on your printer, not

on the computer. Your printer manual tells you the values for the CHR$ control

codes. See Chapter 6 for more information.

114 The Built-in Software

Example:

CENTER

Tells the printer to print the current line centered on the page. Type the

CENTER instruction at the beginning of the line you want to center, then type the

text right next to the CENTER instruction. Do not try to center the text on the

screen; the centering is done when the document is printed.

center; . HISTORY OF COAL MINING Prints the title centered on the

page.

EOF?

Lets you get data from more than one file manager record in a continuous print

operation. EOF? (End Of File?) creates a conditional loop that goes through a file

to get field data from a series of records. Then the document is reprinted for each

record.

Use the EOF? instruction when you want to print multiple copies of the

document with data from a sequential group of records. For example, you would

use EOF? to print form letters, address lists, labels, and so on.

The EOF? instruction, which must be embedded at the end of the document,

does two things:

1. Checks to see if the last record in the file has been read.

2. Forces the document to be printed again, using data from the next record,

when more records remain in the file. When the last record has been read,

EOF? ends the printing operation.

The EOF? instruction is the only indication in a document that more than one

copy of the document will be printed. The RC instruction can be used to start at a

record other than the first record, and the EOF? instruction forces the computer

to the next record after the document is printed.

FLD

Used to print the contents of a file manager field anywhere in a word processor

document. You must include the field number in the FLD (FieLD) instruction.

The printer gets the contents of the specified field from the current record in the

current file manager file. Only the contents of the field are printed. If you want to

print the field name, use the TTL instruction.

If the specified field for the current record is empty, a colon is printed in place

of the field contents.

Section 2. Instructions for Formatting Printed Documents 115

Examples: fld3; :fld5; :fldl;

The author is fld2;:fldl;

Prints the values in the current record for

fields 3, 5, and 1.

Prints the values in the current record for

fields 2 and 1. The fields are printed as part of

a sentence.

JUSTIFY

Forces text to be printed right justified, which means that the right side of the

lines are printed flush against the right margin, just as the left sides ofthe lines are

printed flush against the left margin. Text is ordinarily printed left justified with

ragged right margins.

You can cancel a JUSTIFY instruction with the NOJUSTIFY instruction.

LINKFILE

Lets you link multiple word processor files so they can be printed as one

continuous document. You can link as many word processor files as you need,

including files on other disks. (Ifyou link files from other disks, include a PAUSE

instructionjust before the LINKFILE instruction to provide time to switch disks

before the printing resumes.)

Linked files are treated as a continuous document when they are printed. This

means the following:

1. Margin settings and other formatting instructions affect later files unless they

are changed.

2. Page numbering continues throughout the series of linked files.

3. Text from linked files is printed without breaks on the page, so that you cannot

tell from the printed pages where one file ends and the next begins.

To link a file, include the LINKFILE instruction at the end of the document.

Beside LINKFILE, type the name of the next file, which must be enclosed in

single quotes.

You must use the PR command (not *P) to print linked files. When linked files

are printed, the next file is automatically loaded and printed with no additional

commands or other input from you.

Example: linkfile'sections' Links the file SECTION2 to the current file.

116 The Built-in Software

LMARG

Lets you set the left margin of the page when the document is printed. You can

use any value for the left margin as long as it is a lower number than the right

margin. The default left margin is 0.

Example: lmarg IS;

NOJUSTIFY

Cancels a JUSTIFY instruction. NOJUSTIFY returns the document format

to the default setting of left-justified output. Leftjustified means that the left side

of the lines are printed flush against the left margin. The right side of the lines are

printed with a ragged margin, which means that the ends of the lines are not flush

against the margin.

NEXTPAGE

Forces the printer to go immediately to the next page and resume printing there

regardless of where the printer is currently printing on the page. A NEXTPAGE

instruction overrides the PAGELENgth setting.

You can put a NEXTPAGE instruction anywhere in the document to force a

new page. For example, just before an EOF? instruction, you could include a

NEXTPAGE instruction to force a new page each time a document is reprinted.

NOWRAP

Lets you print wider-than-usual text, such as spreadsheet data. Ordinarily the

computer considers column 77 of the word processor to run continuously onto

column 1 of the next line as if there were no end to a line. If a word is split up

between column 77 and column 1 of the next line, the computer and the printer

assume that the word is a single word. This continuity between column 77 and

column 1 is called word wrap.

In contrast with the effects of word wrap in the word processor work area, the

spreadsheet considers each row to be completely separate. When you transfer

spreadsheet data to the word processor and print the combined material, you may

have to compensate for the assumption of word wrap in the word processor and

the assumption of no word wrap in the spreadsheet. You can make sure the

spreadsheet lines are not run together by placing RETURNS at the end of each

spreadsheet line or by issuing a NOWRAP instructionjust above the spreadsheet

data in the document.

You can cancel NOWRAP with the WRAPON instruction.

Section 2. Instructions for Formatting Printed Documents 117

NO#PAGE

Cancels a#PAGE instruction. When you issue a NO#PAGE instruction, page

numbers are no longer printed at the bottom of each page.

OTHER

Lets you tell the computer that the printer you are using is not made by

Commodore. This printer-brand command is used to switch the special character

set Commodore uses to the standard ASCII character set. If you use a non-

Commodore printer and do not include an OTHER instruction in every printed

document, some characters will not print correctly.

If you use a printer made by Commodore, there is no need ever to use the

OTHER instruction.

#PAGE

Lets you print the page number at the bottom of each page. You can precede

the #PAGE instruction with a SET#PG instruction to start the first page number

to any number. The #PAGE instruction automatically increments the page

numbers as each page is printed.

Use the NO#PAGE instruction to turn off the #PAGE instruction.

PAGELEN

Lets you limit the number of lines that will be printed on each page. The value

of PAGELEN (PAGELENgth) can be any positive number that is less than the

value of PAPERSIZE. The default value of PAGELEN is 60 lines.

PAGEPAUSE

Stops the printout at the end of every page. If you are printing on single sheets

of paper (not connected fanfold paper), use PAGEPAUSE to give yourself time

to insert a new piece of paper after each page prints. The printing does not resume

until you press the RETURN key.

You might also, for example, use PAGEPAUSE to be sure the paper is

properly aligned as each page prints.

PAPERSIZE

Tells the printer you are using nonstandard length paper. The printer assumes

the paper is 11 inches long, which equals 66 lines on most printers, the default

118 The Built-in Software

setting for PAPERSIZE. You do not need to include this instruction when you

use 11-inch long paper.

The PAPERSIZE is stated in lines, not in inches. Be sure to use the proper

PAPERSIZE; if you do not, page tops will be positioned incorrectly. When you

change the PAPERSIZE, you will most likely also change the PAGELEN. The

value of PAGELEN must be less than the value of PAPERSIZE.

Example: [papersize84;:pagelen75; Tells the printer you are printing on 14-inch

legal-sized paper, and you want each page

to contain no more than 75 lines.

PAUSE

Can appear anywhere in a word processor document and stops the printout

immediately. If you are printing linked files that are stored on different disks, use

PAUSE to give yourself time to insert the other disk. The printing does not

resume until you press the RETURN key.

You might also, for example, use PAUSE to make sure the paper is properly

aligned during the printout.

RC

Can be used to tell the computer to start at a specific record number when

accessing file manager data. Use RC (ReCord) when you are using file manager

data in multiple printed copies of a document and you want to start at a record

other than record 1. When the RC instruction is used, the first execution of the

EOF? instruction goes to the record after the one named in the RC instruction.

Type the RC instruction just before the tf;:rc; instruction. Include the number

of the record you want to be accessed first. If you omit the RC instruction when

you are printing multiple file manager records, the first record accessed will

automatically be record 1.

Example: rclO; Starts accessing file manager data at record 10. Records 1

through 9 are skipped.

#RC

Can be used to print the record number of the current record when you are

printing file manager data. #RC (ReCord number) prints only the record number,

not any information about the record contents.

Examples:

Section Z. Instructions for Formatting Printed Documents 119

RMARG

Lets you set the right margin of the page when the document is printed. You

can use any value for the right margin, as long as it is a higher number than the left

margin. The default right margin is 77.

rmarg75;

lmarg20;:rmarg65;

Sets a right margin of 75.

Sets a left margin of 20 and a right margin of 65.

SET#PG

Lets you begin page numbering at a number other than 1. You can precede the

#PAGE instruction with a SET#PG instruction to start the first page number at

any number. The #PAGE instruction automatically increments the page numbers

as each page is printed.

A SET#PG instruction can appear anywhere in the word processor document.

You can use SET#PG to change the sequence of page numbers or to print a page

with any page number. SET#PG is also useful when you are reprinting selected

pages from a long document.

Example:

TF:;RC

Use together at the beginning of a word processor document that will access file

manager data. The TF:;RC (To the File manager and Record) instruction is

required to tell the computer to get data from the file manager. You can type a

separate RC instruction with a record number above the TF:;RC instruction

when you want to begin accessing records at a record other than record 1.

rclO;

tf:;rc;

Tells the computer to get file manager data starting at record 10.

TTL

Use when accessing file manager records. TTL prints the field name for the

field specified in the instruction. TTL prints only the field name, not any data

stored in the field. Use TTL and FLD together when you want to print both the

name of the field and the contents of that field in a particular record.

Example: ttl5;:fld5; Prints the field name of field 5 and the field contents from

the current record.

130 The Built-in Software

WRAPON

Cancels the NOWRAP instruction and returns to normal word wrap condi

tions. Ordinarily the computer considers column 77 of the word processor to run

continuously onto column 1 of the next line as if there were no end to a line. If a

word is split up between column 77 and column 1 of the next line, the computer

and the printer assume that the word is a single word. This continuity between

column 77 and column 1 is called word wrap.

Turn word wrap off with the NOWRAP instruction when you are printing

spreadsheet data and you do not want the rows of data to be considered a

continuous line. You can also make sure spreadsheet rows are not run together by

placing RETURNS at the end of each spreadsheet line.

Section 3. Spreadsheet Commands

The spreadsheet lets you keep track of any type of tabular information. You can

use numbers, words, or formulas as spreadsheet entries. The spreadsheet work

area is organized into numbered rows and columns. Each row-and-column

position in the work area is called a cell. A cell is identified by its row;column

numbers.

Key Commands

Cursor-down arrow Moves the cell cursor down.

Cursor-up arrow Moves the cell cursor up.

F2 or Q and R Moves the cell cursor to the right.

Fl or Q and L Moves the cell cursor to the left.

K8 and T keys Prepare for text entry into a cell.

£8 and N keys Prepare for numeric entry into a cell. Necessary

only when the cell was previously reserved for

text or formula entries.

8S and F keys Prepare for formula entry into a cell. Also

redisplay a formula used in a cell.

£9 and Q keys Repeat the previous Command.

Mathematical Operators Used in Spreadsheet Formulas

Precedes a constant number #100 + 2; 1

in a formula.

+ Addition. 6;6 + 6;7

t

ABS

ATN

COS

DIV

EXP

IFTRUE

LOG

MAX

MIN

Subtraction.

Multiplication.

Division.

Exponentiation.

Absolute (positive) value.

Arctangent in radians.

Cosine of an angle in radians.

Divides a row or column

8;2 - 7;2

2;6 * 3;1

9;2 / 4;4

4;4t2;2

ABS 3;2

ATN 3;2

COS 5;8

DIV 4;4 TO 9:4

series of cells.

Finds an exponential of the

constant e (approximate^

2.71828183).

Makes an entry only if a

clause is true.

Logarithm base e.

Displays the highest number

in a row or column series

of numbers.

Displays the lowest number

in a row or column series

of numbers.

MLT

NOTIFTRUE

SIN

SUB

SUM

TAN

Multiplies a row or column

series of cell entries.

Makes an entry only if a

conditional clause is false.

Sine of an angle in radians.

Subtracts a row or column

series of cell entries.

Adds a row or column series

of cell entries.

Tangent of angle in radians.

Transfers the contents of one

cell or a number into another

cell in an IFTRUE or

NOTIFTRUE formula.

EXP 4; 12

3;l=#100iftrue3;2~#200

LOG 12;4

MAX7;1TO7;9

MIN7;1 TO7;9

MLT 5;2 TO 5;9

3;l>2;lnotiftrue3;l*-2;l

SIN 4;4

SUB 5;2 TO 9;2

SUM 5;2 TO 9;2

TAN 12;3

1ZZ The Built-in Software

Command Mode Commands

AUTO SS

Turns on AUTOmatic calculation mode. When auto mode is on, formulas

entered with the FIT command are automatically calculated. In addition, when

you are in auto mode and change a cell entry that was used in a formula, any other

cell entries that are affected by the change are automatically recalculated. Auto

mode changes, however, do not affect cells frozen with the FRE command.

When auto mode is off, calculations are performed in manual mode. In manual

mode, which is turned on with the MAN command, FITted formulas are not

solved, and formulas affected by cell changes are not recalculated. You must

enter auto mode to solve these calculations.
The default calculation mode is manual mode. The current calculation mode is

indicated by MANU. or AUTO., which is displayed at the far right on the status

line.

BLKMAP SS

Lets you transfer spreadsheet data to the word processor in blocks of up to 7

columns by 50 rows. The width of the block is limited to 7 columns because 7

columns of 11-column cells fill the 77-column word processor work area.

The word processor work area does not need to be empty when you transfer

spreadsheet data, but be sure there is room in the 99-line word processor work

area to hold all the spreadsheet data you are transferring. If there is not enough

room and you are moving spreadsheet data to the bottom of the word processor

work area, only as much data as can fit will be transferred.

When you use the BLKMAP (BLocKMAP) command, spreadsheet data are

transferred without the row and column numbers. The data are placed in the

word processor work area starting at the location of the word processor cursor. If

the word processor cursor is placed so that work in the word processor is already

occupying some of the lines where the spreadsheet data will go, those lines of the

word processor work are cleared and the spreadsheet data are written in its place.

Make sure the word processor cursor is placed so that overwriting will not occur.

To use BLKMAP, follow these steps:

1. Switch to the word processor (fg C, then TW and RETURN).

2. Move the cursor in the word processor to the position where you want the

spreadsheet data to be moved. The spreadsheet data will be displayed over any

word processor text that appears in the area where the data are to be moved, so

be sure there are enough blank lines at the transfer location.

3. Switch back to the spreadsheet (Kg C, then TC and RETURN).

Section 3. Spreadsheet Commands 123

4. Put the cell cursor in the cell that is to be the top left corner of the block you are
moving to the word processor.

5. Enter command mode and type BLKMAP and the cell number for the bottom

right corner of the block. For example, type BLKMAP 7;3 to move data from

the current cell cursor position to cell 7;3.

The message WORKING is displayed briefly while the transfer is taking
place.

6. Switch to the word processor (B C, then TW and RETURN).

After the spreadsheet data have been moved, they become part of the word

processor document and can be manipulated by all the word processor com

mands. But the data are now text and can no longer be updated by the spreadsheet
commands.

You can also use the MAP command to transfer spreadsheet data to the word

processor. MAP transfers data row by row, not in blocks. Use the MAP com

mand when you want to transfer longer cell entries that do not appear in the cells

but are held in memory. BLKMAP transfers only the 11 characters per cell that
appear in the spreadsheet work area.

Example: BLKMAPS3;7 Transfers the block of data from the current cell cursor

location to cell 23;7.

CA WP, FM, SS

Displays a listing of all the files on the current disk. The file CAtalog includes
the following information:

File names.

File lengths (stated in blocks).

Blocks remaining on the disk.

Spreadsheet files have a .c suffix appended to each file name. Word processor

files have no suffix. File manager disks (each file should have its own) show only

their name and blocks free.

The total blocks free on the disk shows you how much space remains out of the

blank disk total of 664.

The catalog information is displayed on a separate screen. The work area is not

affected; you can display a disk catalog at any time. When you finish looking at

the catalog and press RETURN, the intact work area is returned to the screen.

Example: ca Lists a catalog of files on the current disk.

124 The Built-in Software

CCO SS

Lets you copy the cell entries from one column into another. CCO (Column

COpy) writes a duplicate of all cell entries from the column you are copying into

the column where the cell cursor is currently located. The cells are copied into the

same row positions. The cells in the column that is being copied are not affected;

this is a duplication, not a transfer.

To use the CCO command, move the cell cursor into any cell in the column that

is the destination of the copied column. Then type the CCO command followed
by the column number of the column whose cells you are copying. Type a

semicolon at the end of the command and press RETURN. The message WORK

ING is displayed on the status line while the procedure is being executed. The cells
from the copied column then appear in the same row positions in the new column.

The cells in the old column are not affected.

Several precautions must be taken with the CCO command:

1. The CCO command overwrites any cell entries that are already present in the

cells into which you are copying. This means that those cell entries are lost. You

can protect a cell against overwriting by freezing the value with the FRE

command. A frozen cell remains intact when a column is copied into the

column where the frozen cell is located.

2. The CCO command does not adjust formulas when the column is copied. If

any of the cells is used in a formula, you must change the formula manually. It

is best to use CCO only to copy data into a column past all the columns you

have already entered. Copying columns into the midst of filled columns can

lead to errors and oversights even if you use the CINS command to insert a

blank column before you copy. Like CCO, CINS does not adjust the formulas

in the affected columns.

3. Be sure to type a semicolon at end of the CCO command or the command will

not work.

Example: cco3; Copies all the entries from column 3 into the column where the cell

cursor is currently located.

CDEL SS

Deletes all the cell entries in an entire column. If there are any columns to the

right of the deleted column, they are moved one column to the left to fill in the

deleted column. Be careful when you use the CDEL (Column DELete) command:

CDEL does not adjust any formulas that are affected by a column deletion.

Formulas that refer to cells to the right of a deleted column will most likely be

affected, and you will have to change the formulas manually.

Example: cdel Deletes the column where the cursor is currently located.

Section 3. Spreadsheet Commands 125

CINS SS

Inserts a blank column between filled columns. Columns to the right of the

inserted column are moved one column to the right to make room for the inserted
column.

Be careful when you use the CINS (Column INSert) command: CINS does not

adjust any formulas that are affected by a column insertion. Formulas that refer

to cells to the right of an inserted column will most likely be affected, and you will
have to change the formulas manually.

CM WP, SS

When issued in the spreadsheet, clears the spreadsheet work area, but does not

affect the other work areas. Spreadsheet work is lost after you issue a CM
command, unless you save the work first.

After you issue a CM command, the computer displays a question to double
check your intentions. In the word processor the question is: CLEAR ALL Y/ N?

In the spreadsheet the question is: ARE YOU SURE Y/ N? The questions are the

same: Are you sure you want to clear the current work area? Because all informa

tion cleared from the work area is lost unless you save it, this question gives you a
last chance to change your mind before the work area is erased.

COLOR SS

Lets you select a new color for the screen background. When you first turn on

the built-in software, the word processor work area displays a white cursor and

pale yellow characters on a black screen. If you want to use a different color

combination, issue a COLOR command in the spreadsheet. You can change the

color of the screen only from the spreadsheet.

You can select only the screen background color with the COLOR command;

other colors are selected automatically. To select a new color, use the numbers
from Table 2-2.

Table 2-2. Screen Background Colors and Numbers

Background

Black

Gray

Red

Cyan

Purple

Green

Blue

Yellow

Characters

Yellow/white

Black/white

Yellow/white

Black/ white

Black/white

Black/ white

Cyan/white

Black/white

Number

0

1

2

3

4

5

6

7

Background

Orange

Brown

Yellow-green

Pink

Blue-green

Light blue

Dark blue

Light green

Characters

Yellow/white

Yellow/ white

Black/white

Yellow/white

Black/white

Black/white

Cyan/white

Black/white

Number

8

9

10

11

12

13

14

15

126 The Built-in Software

To issue a COLOR command, enter command mode and type COLOR and
the number ofthe color you want for the screen background. Type a semicolon at

the end of the command.
When you switch to another program, the screen color change remains in

effect.
When you select a new color, cell entries that were made previously are not all

automatically changed to the new character color (if there is a new character

color). To change the cell colors, just pass the cell cursor up and down one
column. All the cells in each row are changed to the new character color as the cell

cursor passes down the column.

All the characters in the word processor work area, however, are automatically
changed to a new character color as soon as you switch to the word processor.

COPY SS

Lets you copy a cell entry into the cell where the cell cursor is currently located.
If there is already a value in the recipient cell, it is overwritten unless it is protected
by the FRE (frozen cell) command. The cell that is being copied is not affected by

the COPY command; this is a duplication, not a transfer.
To use the COPY command, move the cell cursor into the cell where you want

the duplicate entry to appear. Then type the COPY command followed by the cell

number of the cell you are copying.
The COPY command does not adjust formulas when the cell is copied. If the

duplicate cell is used in a formula that needs adjustment, you must change the

formula manually.

Example: copy3;4 Copies the entry from cell 3;4 into the cell where the cell cursor

is currently located.

DF WP, SS

Removes a file permanently from a disk. Use the DF (Delete File) command

only when you no longer want to keep a copy of the file.

• To delete a file you previously saved on disk, issue the DF command and type

the name of the file when the prompt DELETE FILE: is displayed on the

command line at the bottom of the work area. When you press RETURN, the

disk takes a few seconds to remove the file from the disk. This command operates

like the SCRATCH command in BASIC.

You can verify that the file has been deleted by viewing the disk catalog, which

you access by issuing a CA command.

Sections. Spreadsheet Commands 127

FIT SS

Copies a formula from a cell into another cell and adjusts the formula to fit the

new cell. To use FIT, move the cell cursor to the cell where you want the adjusted

formula to appear. Then type FIT and the cell number of the cell whose formula

you want to adapt. The FIT command automatically changes the cell numbers in

the formula to fit the new cell.

When you use the FIT command in manual calculation mode, the solution to

the FITted formula is not calculated. Instead, the solution to the original formula

is displayed in the new cell. You must enter auto calculation mode to solve FITted

formulas. As soon as you enter auto mode, all FITted formulas in the work area

are solved and the answers are displayed in the appropriate cells.

If you are already in auto mode when you enter a FITted formula, the correct

solution to the FITted formula is displayed automatically in the new cell.

For example, if the formula in cell 3;6 is SUM 3;2 TO 3;5, and you move the

cursor to cell 4;6 and issue the command FIT 3;6, the computer changes the

formula to SUM 4;2 TO 4;5.

The difference between the formulas is that the row number has been adjusted

to match the difference between the row of the original formula (row 3) and the

row of the FITted formula (row 4). When the FITted formula is adjusted, the

computer measures the difference between the row and column locations where

the original formula appeared and the row and column coordinates of the cell

where you issued the FIT command. Row and column number differences are
then used to adjust the formula in the new cell.

Example: With the cell cursor in cell 7;5, issue the command FIT4;3. Cell 4;3 contains this

formula; sum 1;3 to 3;3. The formula is adjusted to be sum 4;5 to 6;5.

The difference between cells 7;5 and 4;3 is three rows and two columns. To

adjust the formula from cell 4;3, the computer adds three rows to each row and

two columns to each column in the formula. The resulting cell numbers in the

formula are calculated l+3;3+2 TO 3+3;3+2, or sum 4;5 to 6;5.

FL SS

Returns numeric cell entries to the default floating point format. Floating

point numbers have a variable number of decimal places. The decimal point

"floats" to the appropriate place in the number.

Use the FL (FLoating point) command when you want to cancel an IN (integer

format) or $$ (two-decimal-place dollar format) command.

Current cell entries are not affected when you change the numeric display

format. If you change the format and want to adjust current cell entries, move the

128 The Built-in Software

cell cursor to each cell and press RETURN. The numeric entries will be converted

to the current numeric display format.

FORMAT

Prepares a NEW disk for file storage. Formatting divides the disk into sectors

compatible with your disk drive and establishes a disk directory. You can format

a used disk, but formatting erases everything on a disk, so do not format a used

disk unless you are wiling to erase all the information stored on it.

You can format the disk in two ways:

1. From BASIC by using the HEADER command. Use HEADER if you have

not yet accessed the built-in software and you know you will want to store your

work on a disk. The HEADER command is explained in Chapter 1.

2. From within the built-in software by using the FORMAT command. The

FORMAT command can be issued only from the spreadsheet program. If you

are using a different program and want to format a disk, switch to the

spreadsheet. DO NOT switch back to BASIC to use the HEADER command

because you will lose your work in the built-in program.

Follow these steps to format a disk from the spreadsheet:

1. Insert a new disk into the disk drive. If you have ever used the disk before, DO

NOT format it unless you are certain you do not want to keep anything on the

disk. Formatting erases any information already stored on the disk. Do not

format disks that contain commercial software either.

2. Enter the command mode, type FORMAT, and press RETURN.

3. Type Y in response to ARE YOU SURE? if you are indeed sure you want to

format the disk. This prompt question gives you a last chance to bail out before

the format executes. Be sure the disk is blank or expendable before you type Y.

Type N if you change your mind.

4. In response to the prompt, type in a disk name (up to 16 characters) followed

by a comma and a 2-character identification for the disk. Every disk should be

given a unique identification.

After a short period of time, the disk is formatted and you can save files on it.

Note: Do not store file manager files on a disk that contains any other type of

file, including word processor or spreadsheet files. Each file manager file should

have its own disk.

Section 3. Spreadsheet Commands 129

FRE SS

Protects a cell entry from being changed by an inserted, deleted, or copied cell

or by any change in the numeric display format or a formula. The value of a

frozen cell cannot be changed at all until you cancel the freeze with the THAW

command.

To FREeze a cell, move the cell cursor to the cell whose entry you want frozen.

Issue the FRE command.

When the cell cursor enters a frozen cell, an asterisk is displayed on the status

line to indicate that the cell value is frozen.

Example: FRE Freezes the entry in the current cell so it cannot be changed.

FU WP,SS

Cancels half-screen mode (see the HA command) and returns the screen to a

full display of the spreadsheet work area. The FU (FU11 screen) command has no

effect unless the computer is in half-screen mode, which is turned on by the HA

command. Issuing an FU command does not affect the contents of either the

word processor or the spreadsheet.

To return to the full-screen spreadsheet, you must be in the spreadsheet when

you issue an FU command. If you issue the command in the word processor, you

will return to the full-screen word processor. If this happens, just issue a TC

command to switch to the spreadsheet.

GOTO SS

Moves quickly and directly to a specified cell without using the cursor move

ment keys. To use GOTO, type GOTO and the number of the cell that is your

destination.

Example: goto 12; 10 Sends the cell cursor directly to cell 12;10.

HA WP, SS

Divides the screen in half so that partial work areas from the spreadsheet and

word processor programs can be displayed simultaneously. In half-screen mode,

12 lines from the word processor are displayed in the top half of the screen, and 7

rows from the spreadsheet are shown in the bottom half of the screen.

Half-screen mode has several uses:

130 The Built-in Software

1. When you want to transfer data from the spreadsheet row by row with the

MAP command. MAP lets you transfer data manually, and half-screen mode

lets you see both work areas while you use MAP.

2. When you need to refer to spreadsheet data while you are writing a word

processor document, but do not want to transfer the data.

3. When you need to get data from the word processor for use in the spreadsheet.

You cannot transfer data from the word processor to the spreadsheet, but

half-screen mode lets you view any part of the word processor work area while

you are working in the spreadsheet.

When you first issue the HA command in the word processor, the screen is split

in half, but the spreadsheet is not displayed in the work area. When you first issue

the HA command in the spreadsheet, the spreadsheet is displayed in the bottom

half of the screen, and the word processor work area is not visible. To bring up the

other program, issue aTC or TW command. The other program is then displayed

on the other half of the screen.

Cursor Control

Although you can see partial work areas from both programs, you can use only

one program at a time. The cursor can move around only half of the screen, and

the keyboard is under the control of the current program. You cannot type any

information into the other program. To switch between programs, you must still

issue TC and TW commands. The status line at the bottom of the screen indicates

which program currently controls the keyboard.

When you are in half-screen mode, you can still view any segment of the whole

work areas of either program. Just use the cursor keys and other cursor move

ment keys to display other parts of the work area on the half screen.

HOME SS

Moves the cell cursor directly and quickly to cell 1;1.

Example: home Moves the cell cursor directly to cell 1; 1.

ID WP,SS

Initializes the current disk. Before you use the ID (Initialize Disk) command,

make sure the drive is on and the disk is inserted.

You can initialize the disk at any time. Your current work is not affected, nor

are any files on the disk. Whenever you change disks, you should issue the ID

command after you insert the second disk so that it is initialized.

Section 3. Spreadsheet Commands 131

Example: id Initializes the disk currently in the drive.

IFTRUE

Checks the condition of part of a formula. IFTRUE lets you make cell entries

based on conditions in other cells. For example, if you are figuring a budget, you

can put an amount of money into the savings column IF it is TRUE that income

minus expenses for the month is a positive number.

The IFTRUE formula is a compound command consisting of the following:

1. The first part contains the calculation whose outcome is checked by IFTRUE.

2. The IFTRUE command is typed next.

3. The final part is the assignment of a value to a cell, which is executed ONLY if

the condition in the first part is met.

The first part of the formula usually contains a comparison operator. Four

comparison operators you can use are described in Table 2-3.

The third part of the IFTRUE formula uses the left-pointing arrow to assign a

value to a cell, which occurs only when the first part of the formula is true.

The IFTRUE formula can be used while the cell cursor is in any cell. However,

when the IFTRUE formula is executed, a 0 (when false) or 1 (when true) is placed

in the current cell if that cell is not also the destination for the IFTRUE formula.

So do not issue an IFTRUE when the current cell contains a value you want to

protect.

You can also use the NOTIFTRUE command to check conditions in a for

mula. NOTIFTRUE assigns the value in part 3 of the formula only when the

calculation in the first part of the formula is not true.

Examples: 10;3> 11

Table 2-3.

Symbol

—

nte

>

<

;3 lftrue 12

Comparison

Meaning

equal

not equal

greater than

less than

;3 - 10;3

Operators

Assigns the value of cell 10;3

to cell 12;3 if the entry in 10;3

is greater than the entry

in 11;3.

138 The Built-in Software

12;10 + #100 = 4;10 iftrue 3;10 - #250 Assigns the number 250 to cell

3;10 if the value of 12;10 plus

100 is equal to the entry in cell

4;10.

IN SS

Displays numeric cell entries as whole numbers only, regardless of whether or

not the numbers were entered with decimal parts. Decimal parts of numbers

entered are simply chopped off; they are not rounded. For example, if you are

using the INteger format and enter 12.9, the spreadsheet will display 12 in the cell.

Current cell entries are not affected when you change the numeric display

format. If you change the format and want to adjust current cell entries, move the

cell cursor to each cell and press RETURN. The numeric entries will be converted

to the current numeric display format.

Use the FL command to cancel an IN command.

Although integer format truncates decimal parts, the spreadsheet remembers

the entire value you entered. If you go back to floating point format, send the cell

cursor back into the cell and press RETURN, the decimal part will then be

displayed.

Example: in Changes the format ofnumeric entries so only whole numbers are displayed.

LEFTJ SS

Displays numeric entries LEFT Justified in their cells. Ordinarily numeric

entries are right justified, which means they are flush against the right margin of

the cell. Left justification displays numeric entries flush against the left margin of

the cell. Text entries are automatically left justified.

The cell cursor can be anywhere when you enter a LEFTJ command. Only

numeric entries that you make after the command is issued are affected. You can,

however, also change previous entries by moving the cell cursor back to each cell

and pressing RETURN.

Cancel LEFTJ with the RIGHTJ command.

Example: leftj Forces numeric entries to be displayed flush against the left margin of

the cell.

LF WP, SS

Lets you bring a file stored on disk into the work area. When you issue the LF

(Load File) command, the computer displays the message LOAD FILE: on the

status line at the bottom of the screen. Type the name of the file you want to load.

Section 3. Spreadsheet Commands 133

When you load a file with the LF command, the work area is cleared before the

file is displayed. The loaded file is displayed at the top ofthe work area regardless

of the current location of the cursor. Because the LF command always clears the

work area before the file is loaded at the top of the work area, any work in the

work area will be lost unless you saved it before you issued the LF comand.

Error Messages

If the message FILE NOT FOUND>» is displayed on the status line after you

issue an LF command, the disk in the drive does not contain the file whose name

you typed in response to LOAD FILE. Either the wrong disk is in the drive or you

misspelled the file name when you typed it. Check the disk catalog to make sure

the file exists on that disk; then reissue the command. If the file does not exist on

the disk and you are sure you have the right disk, most likely the file was never

saved. If you must switch disks, be sure to issue the ID command after doing so.

If the message NO FILE! is displayed on the status line, the disk drive is not

connected, is not turned on, or no disk is inserted in the drive.

Example: If

LOAD FILE: budget

After you type If, the computer displays LOAD

FILE. Type the name of the file you want to load.

MAN SS

Cancels automatic calculation mode. When MANual mode is on, formulas are

calculated only when you enter the formula cell and press RETURN. Formulas

entered with the FIT command are not calculated. In addition, when you are in

manual mode and change a cell entry that was used in a formula, any other cell

entries that are affected by the change are not recalculated. To perform these

calculations, you must use the AUTO command to enter auto mode.

The default calculation mode is manual mode. The current calculation mode is

indicated by MANU. or AUTO., which is displayed at the far right on the status

line.

Example: MAW Cancels auto mode and returns to manual calculation mode.

MAP SS

Lets you transfer cells of spreadsheet data by rows to the word processor.

Transferring data with the MAP command is manual: you move the cell cursor

into each cell you want to transfer. Because you select each cell, you should use

MAP in half-screen mode so that you can see both work areas simultaneously.

Use MAP when you want to transfer only selected cells from the spreadsheet.

The spreadsheet data are MAPped to the current word processor cursor location.

134 The Built-in Software

MAPped data overwrites word processor text, so be sure the cursor is beneath all

the text or create enough blank spaces within the text to avoid overwriting.

Use the IL (Insert Line) command to open up blank lines. You can also create a

block of blank linds with the SP (Set Pointer), CB (Create Block), and IB (Insert

Block) commands. To create a block of blank lines, move the cursor to a blank

area on the word processor screen, set a pointer at the bottom of the appropriate

number of blank lines, and create a block. Then move the cursor to the line in the

text where you want to locate the blank block, and insert the block.

When you use MAP, you set a top left corner of the area to be transferred. You

cannot MAP above or to the left of this corner. No bottom right corner is set, and

you can leave out any cell to the right of the leftmost column just by not putting

the cell cursor into a cell.

Every time you enter a row, whether you have been in it before or not, you must

move the cell cursor to the leftmost cell on that row. Otherwise you will not be

able to MAP any cells in the row. If you have previously MAPped the leftmost

cell, you still have to return to it to MAP any more cells when you reenter the row.

After you MAP the leftmost cell in a row, you do not have to MAP cells in any

particular order. You can move more cells in the row or go immediately to the

next row. You can go back up to rows, skip cells, or skip down to other rows, as

long as you visit the leftmost cell each time you enter the row.

To use MAP, follow these steps:

1. Turn on the half-screen mode (Q C, then HA and RETURN).

2. Switch to the word processor (g C, then TW and RETURN).

3. Move the word processor cursor to the place on the screen where you want to

place the MAPped data. Note that MAPped data overwrite word processor

text, so move the word processor cursor under all the text, or open up enough

blank space within the text to prevent text loss.

4. Switch back to the spreadsheet ({§ C, then TC and RETURN).

5. Put the cell cursor in the cell that is to be the upper left corner of the cells

MAPped to the word processor.

6. Issue the command MAP and press RETURN.

7. Move the cell cursor into every cell you want to transfer.

You can move to the next row and continue MAPping without issuing another

MAP command. However, once the first row establishes the leftmost column of a

MAPped row, subsequent rows must also begin in that column. Use the Fl, F2,

and cursor up and down keys to move across rows to transfer data.

Section 3. Spreadsheet Commands 135

Using MAP to Transfer Long Cell Entries

When you first enter data into a cell, you can enter up to 36 characters per cell, but

only 11 characters are displayed. Extra characters are held in memory and are

displayed on the command line when you enter the cell. MAP sends these extra

characters, including long formulas. In contrast, BLKMAP transfers only 11

characters per cell.

Turning OFF the MAP Command

The OFF command lets you stop the MAPping procedure. You can also termi

nate MAP by switching to the word processor.

Issuing Other Commands During a MAPping Procedure

Unless you terminate MAP by using the OFF command or by leaving the

spreadsheet, MAPping remains in effect. You can issue other spreadsheet com

mands during MAPping without turning MAP off. You can also make changes

in cell entries during a MAPping procedure without interrupting the transfer

process. The changed cell entry is MAPped to the word processor.

Example: map Turns on cell MAPping.

off Turns off cell MAPping.

NOTIFTRUE

Checks the condition of part of a formula. NOTIFTRUE lets you make cell

entries based on conditions in other cells. For example, if you are figuring a

budget, you can put an amount of money into the savings column IF it is NOT

TRUE that income minus expenses for the month is a negative number.

The NOTIFTRUE formula is a compound command consisting of the

following:

1. The first part contains the calculation whose outcome is checked by

NOTIFTRUE.

2. The NOTIFTRUE command is typed next.

3. The final part is the assignment of a value to a cell, which is executed ONLY

when the condition in the first part is not met.

136 The Built-in Software

The first part of the formula usually contains a comparison operator. Four

comparison operators you can use are shown in Table 2-4.

Table 2-4. Comparison Operators

Symbol Meaning

=

nte

>

<

equal

not equal

greater than

less than

The third part of the NOTIFTRUE formula uses the left-pointing arrow to

assign a value to a cell, which occurs only when the first part of the formula is not

true.

The NOTIFTRUE formula can be used while the cell cursor is in any cell.

However, when the NOTIFTRUE formula is executed, a 0 (when false) or 1

(when true) is placed in the current cell if that cell is not also the destination for the

NOTIFTRUE formula. Therefore, do not issue a NOTIFTRUE when the current

cell contains a value you want to protect.

You can also use the IFTRUE command to check conditions in a formula.

IFTRUE assigns the value in part 3 of the formula only when the calculation in

the first part of the formula is true.

Examples: 8;6 = 9;6 notiftrue 10;6 «- 7;6

S;l < 4;1 notiftrue 3;1 - #7.5

Assigns the value of cell 7;6 to

cell 10;6 if the entry in 8;6 does

not equal the entry in cell 9;6.

Assigns the number 7.5 to cell

3;1 if the value of cell 2;1 times

0.6 is not less than the entry in

cell 4; 1.

OFF SS

Turns off the MAP command when you are finished transferring rows of

spreadsheet data to the word processor.

Example: off Cancels a MAP command.

RCO SS

Lets you copy the cell entries from one row into another. RCO (Row COpy)

writes a duplicate of all cell entries from the row you are copying into the row

Sections. Spreadsheet Commands 137

where the cell cursor is currently located. The cells are copied into the same

column positions. The cells in the row that is being copied are not affected; this is

a duplication, not a transfer.

To use the RCO command, move the cell cursor into any cell in the row that is

the destination of the copied row. Then type the RCO command followed by the

row number of the row whose cells you are copying. Type a semicolon at the end

of the command and press RETURN. The message WORKING is displayed on

the status line while the procedure is being executed. Then the cells from the

copied row appear in the same row positions in the new row. The cells in the old

row are not affected.

Several precautions must be taken with the RCO command:

1. The RCO command overwrites any cell entries that are already present in the

cell into which you are copying. This means that those cell entries are lost. You

can protect a cell against overwriting by freezing the value with the FRE

command. A frozen cell remains intact when a row is copied into the row where

the frozen cell is located.

2. The RCO command does not adjust formulas when the row is copied. If any of

the cells is used in a formula, you must change the formula manually. It is best

to use RCO only to copy data into a row below all the rows you have already

entered. Copying rows into the midst of filled rows can lead to errors and

oversights even if you use the RINS command to insert a blank row before you

copy. Like RCO, RINS does not adjust the formulas in the affected rows.

3. Be sure to type a semicolon at the end of the RCO command or the command

will not work.

Example: rco3; Copies all the entries from row 3 into the row where the cell cursor

is currently located.

RDEL SS

Deletes all the cell entries in an entire row. If there are any rows below the

deleted row, they are moved up one row to fill in the deleted row. Be careful when

you use the Row DELete command: RDEL does not adjust any formulas that are

affected by a row deletion. Any formulas that refer to cells below a deleted row

will most likely be affected, and you will have to change the formulas manually.

Example: rdel Deletes the current row.

RESET SS

Clears the work areas of all the built-in programs and starts the built-in

software over as if you had just turned the software on. The computer goes back

138 The Built-in Software

to the software title screen, not to BASIC, so you do not press the Fl key to get

back to the software.

After you issue a RESET command, the computer displays the message ARE

YOU SURE Y/N. If you are certain you are willing to erase all your work areas

and return the built-in programs to a just-turned-on condition, type Y. If you

decide against resetting the built-in programs, type N.

The difference between the RESET command and the RESET button, which is

located on the side of the computer, is that the RESET command clears the

built-in software and returns the software to ajust-turned-on condition while the

RESET button cancels the built-in software and returns the computer to BASIC,

where the initial power-on message is displayed.

The RESET command can be issued only from the spreadsheet.

Example: reset Clears all software work areas and returns them to a just-turned-on

condition.

RIGHTJ SS

Cancels the LEFT Justify command. RIGHTJ (RIGHT Justify), which is the

default condition, displays numeric entries right justified, which means they are

flush against the right margin of the cell. Left justification displays numeric

entries flush against the left margin of the cell. Text entries are automatically left

justified.

The cell cursor can be anywhere when you enter a RIGHTJ command. Only

numeric entries you make after the command is issued are affected. You can,

however, also change previous entries by moving the cell cursor back to each cell

and pressing return.

Example: rights Cancels LEFTJ and forces numeric entries to be displayed flush

against the right margin of the cell.

RINS SS

Inserts a blank row between filled rows. Rows below the inserted row are

moved one row down to make room for the inserted row.

Be careful when you use the RINS (Row INSert) command: RINS does not

adjust any formulas that are affected by a row insertion. Any formulas that refer

to cells below an inserted row will most likely be affected, and you will have to

change the formulas manually.

Example: rins Inserts a blank row at the location of the cell cursor.

Section 3. Spreadsheet Commands 139

SF WP, SS

Lets you store the current spreadsheet work area on a disk. To store a file,
follow these steps:

1. Insert a formatted disk. Use the ID command to initialize it.

2. Issue the SF command.

3. Type a file name when the message SAVE FILE: is displayed on the status line.

You must give each file a name. The file name must be between 2 and 16
characters long.

4. If a file by the given name already exists on the disk, REPLACE Y/N is

displayed. Type Y in response to REPLACE Y/N unless you want to keep the

old copy of the file. In this case, type N and save the current file with a different
name.

If you do not have a formatted disk, insert a new disk and issue a FORMAT
command before the SF command.

You can verify that the file is stored by issuing a CA command, which

- displays a list of all the files on the disk. Make sure the number of blocks

assigned to the file is greater than zero. If the number of blocks is zero, the file

was not saved. Press RETURN and issue the SF command again.

Example: sf

SAVE FILE: budget

TF WP, SS

Saves the spreadsheet file called budget.

Lets you switch to the file manager program. You can issue the TF (To the File

manager) command at any time. The spreadsheet work area is not affected when

you leave the program. Use the TC command to switch back to the spreadsheet.

Example: tf Switches to the file manager program.

TW SS,FM

Lets you switch to the word processor program. You can issue the TW (To the

Word processor) command at any time. The spreadsheet work area is not affected

when you leave the program. Use the TC command to switch back to the

spreadsheet.

Example: tw Switches to the word processor program.

140 The Built-in Software

THAW SS

Lets you cancel a FRE command, which protects a cell entry from being

changed by an inserted, deleted, or copied cell or by any change in the numeric

display format or a formula. The value of a frozen cell cannot be changed at all

until you cancel the freeze with the THAW command.

Once a frozen cell is THAWed, it is subject to changes like any other cell.

Example: thaw Cancels the freeze on a cell value.

TRANSFER SS

Lets you copy the contents of one cell into another cell. You can also use

TRANSFER, which is always represented by a left-pointing arrow, to put a

number into a cell. TRANSFER is never issued by itself; it is used as part of

IFTRUE and NOTIFTRUE compound formulas.

Example: 3;1=#55 iftrue 5;1 — #33 Transfer the number 33 into cell 5;1 if cell 3;1

equals 55.

$$ SS

Displays numeric cell entries with two decimal points, regardless of whether or

not the numbers were entered with decimal parts. If a number contains more than

two decimal places, the remaining numbers are simply chopped off; they are not

rounded. For example, if you are using the $$ (dollar) format and enter 12.9999,

the spreadsheet displays 12.99 in the cell. If you enter number 55, the spreadsheet

displays 55.00.

Current cell entries are not affected when you change the numeric display

format. If you change the format and want to adjust current cell entries, move the

cell cursor to each cell and press RETURN. The numeric entries will be converted

. to the current numeric display format.

Use the FL command to cancel a $$ format command.

Although the $$ format truncates decimal numbers with more than two

decimal places, the spreadsheet remembers the entire value you entered. If you go

back to floating-point format, send the cell cursor back into the cell and press

RETURN, the full decimal part will then be displayed.

Example: Changes the format of numeric entries so that all numbers are dis

played with two decimal places.

Section 4. The File Manager

The file manager lets you keep records of many types of information. You can

store addresses, product information, bibliographies, and any other sort of

information that can be adapted to a standard form.

Section 4. The File Manager 141

The file manager is organized into files, records, and fields. Each record in a file

contains a number of individual fields, such as name, state, or phone number.

You design the file yourself by setting the number, name, and length offields. You

enter information into each field for each record. Then you store the records in

the file.

After file manager records are stored, you can display them again, sort them by

any field, search the records for a specific piece of information, create subfiles,

and send field information to the word processor for incorporation into a printed

document. The format instructions used for sending field information to the

word processor are explained in Section 2 of this chapter.

Pile Manager Commands

CA WP, FM, SS

Displays a listing of all the files on the current disk. The file CAtalog includes

the following information:

File names

File lengths (stated in blocks)

Blocks remaining on the disk

Spreadsheet files have a .c suffix appended to each file name. Word processor

files have no suffix. File manager disks (each file should have its own) show only

their name and blocks free. The total blocks free on the disk shows you how many

of the blank disk total of 664 blocks remain available.

The catalog information is displayed on a separate screen. The work area is not

affected; you can display a disk catalog at any time. When you finish looking at

the catalog and press RETURN, the intact work area is returned to the screen.

Example: ca Lists a catalog of files on the current disk.

DS FM

Lets you sort a file by any of up to three fields. The sort creates a temporary

subfile of records reorganized by the sort criteria. You can use the subfile in

searches, in record reviews, or for printing multiple copies of a word processor

document. The DS (Disk Sort) command does not affect record numbers or

contents, but just the order in which records are organized.

When you want to sort by two or three fields, type the field numbers in the

order of sorting priority. To sort first by state and then by name, type the state

field number and then the name field number. Separate multiple field numbers

with semicolons (e.g., ds7;9;3;).

142 The Built-in Software

When you sort a file, the word processor work area is automatically cleared. If

you have work in the word processor work area, save it before you issue the DS

command. To perform a disk sort, follow these steps:

1. Insert the disk that contains the file you want to sort. Use the ID command to

initialize it.

2. Type the DS command and the field number of the fields you want to use to

sort the file (e.g., ds5;3; sorts by the fifth field and then by the third field).

After you issue the DS command, the message SYSTEM WILL CLEAR

WORD PROCESSOR TO SORT Y/ N? is displayed. Type Y to proceed or N to

abort the sort. While the sort is executing, the file manager displays the message

BEGIN DISK SORT ON with the field numbers of the sort. When the sort is

finished, the file name, number of records, and number of the last record stored

are displayed.

Records are sorted using the CHR$ code values of the contents of the sort

field(s). This means that fields containing only letters are sorted alphabetically

whereas fields containing only numbers are sorted numerically. Fields containing

a mixture of letters and numbers or punctuation marks (including blanks) may

not be sorted as you would expect. Refer to the CHR$ code list in Appendix C for

the values used.

The sort creates a temporary subfile of the old file records rearranged. To

review the sorted file, use the RV (ReView) command. Records are displayed in

the sorted order, and the actual record number of each record is displayed at the

bottom of screen during the review. You can display individual records with the

RC (ReCord) command. Use the old record numbers, which are not changed

when the file is sorted.

The subfile is destroyed when you turn off the computer, re-sort the file, or load

another file manager file. The subfile is not lost, however, when you switch to

another program.

You can also terminate the subfile with the RESETLIST command, which

returns the file to its normal condition.

Examples: ds2; Sorts the file by the second field.

ds4;7;l; Sorts the file first by field 4, then by field 7, and finally by

field 1.

HIGHRC FM ^

Sets an upper limit on the records to be included in a subfile. The record

number in the HIGHRC (HIGH ReCord) command prevents all those records

with higher record numbers from being accessed until the subfile is disbanded.

Section 4. The File Manager 143

To use the HIGHRC command, type HIGHRC and the record number you

want to be the last in the subfile. Type a semicolon at the end of the command.

The subfile is disbanded when you turn off the computer, load another file

manager file, re-sort the file, or issue a RESETLIST command.

Example: higlirc75; Sets record number 75 as the highest record that can be

accessed.

NEWTF FM

Lets you design a new file. In the design process, you give the file a name, set the

total number of fields for the file, and give the names and maximum lengths for

each field. The field information you enter in the file design is used to prompt you

when you enter information for each record.

When you design a new file, have a new, blank disk ready. The disk need not be

formatted. Any information that is currently on the disk will be lost during the

new file construction. Each new file should be stored on its own disk. Never store

a file manager file on the same disk with other types of files, including files from

the other built-in programs. The file manager creates a large "file" using direct-

access disk commands. The file does not appear in the disk directory. Do not use

the BASIC COLLECT command on file manager disks.

When you first switch to the file manager, the message TYPE TF OR NEWTF

asks if you will be using an old file (TYPE TF) or creating a new one (TYPE

NEWTF). When you respond with NEWTF (NEW To File), the computer
displays the following prompts:

ENTER FILE NAME (1..16)

You give the file a name up to 16 characters long. This is used as the name for
the disk during formatting.

ENTER NUMBER OP FIELDS 1..17

01;

You enter the total number of fields the file will contain. The default is 1 and

the maximum is 17. Just type over the 01 to select a number. The trailing

semicolon is required.

ENTER FIELD NAME (1..35) FIELD # 01;

You enter the name of the first field. The name can be up to 35 characters long.

ENTER FIELD LENGTH 1..38 FIELD # 01;

01;

144 The Built-in Software

You enter the maximum number of characters to be entered in field 1. The

default is 1 and the maximum is 38. Just type over the 01 to select a number.

Again, the trailing semicolon is required.

The third and fourth prompts are repeated for each field until the total number

of fields (entered at the second prompt) are defined.

When you finish entering all the fields, the screen clears and a review of the file

design is displayed. A message telling you how many records you can store (999)

for the file is also displayed.

The computer also asks OK TO FORMAT DISK? Y/N. You should have a

new, blank disk ready. Insert it in the disk and type Y in response to the prompt

question. The formatting procedure takes a short time. When the computer

reports that the disk is ready, your new file design is stored on it. You are then

ready to enter records.

Example: newtf Tells the file manager that you are ready to design a new file.

NR FM

Enters information into records. Unlike entering records with the RC

(ReCord) command, the NR (Next Record) command automatically moves to

the next record after each record is entered. The NR command saves time, and

you should use it instead of RC when you are entering a series of records.

To use the NR command, follow these steps:

1. Issue a TF command to display the record number of the last record entered if

you are adding records to a previously stored file.

2. Issue an RC command to display the first record you are going to enter. If you

are entering records into a new file, the first record would be RC1;, and if you

are adding records to an old file, the first record would be 1 plus the record

number named in the TF command as the last record entered.

3. Store the first record with the UD (UpDate record) command.

4. Issue an NR command to enter subsequent records. NR displays the next

record automatically.

5. Store each record with the UD (UpDate record) command.

6. Terminate the NR command by entering command mode and issuing a

command.

Example: nr Displays a series of records so you can quickly enter information.

Section 4. The File Manager 145

PI FM

Lets you set limited criteria for the creation of a subfile. You can pick alpha

betic or numeric ranges that limit the records included in a subfile. The range

applies to one field, which you specify when you issue the PI (Pick) command.

For example, you can Pick a limited range of area codes from a phone number

field.

After the subfile is Picked, you can search, sort, review, or transfer the records

to the word processor. For example, you can limit a sorted file to only those

records whose name field starts with A through F.

Note that while PI creates a subfile, it does not reorganize the records in the

subfile. The records in a Picked subfile are still arranged in the order the records

were entered. If you issue a HIGHRC command before you issue a PI command,

the PI command will use only the records whose numbers are less than the high
record.

The PI command looks for exact matches between the range limits you enter

and the entries in the records. The PI command distinguishes between upper and

lower case letters, so be sure to note this difference when you enter the range
limits.

To use the PI command, follow these steps:

1. Type pi and the number of the field you will use to pick a limited range of

records. End the PI command with a semicolon.

2. Type the low end of the Picked range in response to the prompt BOTTOM:

and press RETURN. You can use one or more letters or numbers, a word, or

any phrase up to 38 characters long. For example, to Pick a subfile of zip codes

that begin with 190 through 194, you would type 190 as the BOTTOM of the

Picked range.

3. Type the high end of the Picked range in response to the prompt TOP: and

press RETURN. Again, you can use up to 38 characters as the range limit.

The PI command creates the limited subfile by searching all the records in the

file. While the PI command is executing, a left-pointing arrow is displayed for

each record that is put in the subfile.

To review the Picked subfile, issue an rvl; command. You can also issue

commands to sort or search the Picked subfile.

Use RESETLIST to delete a Pick subfile.

Example: pi5; Uses field number 5 as the basis for the Picked subfile!

BOTTOM: My Sets My as the bottom of the Picked range.

146 The Built-in Software

TOP: Q Sets an uppercase Q as the high end of the Picked range.

With these limits, the subfile will contain entries from

field 5 that start with My through Qy.

RC FM

Displays any record. You can also use the RC (ReCord) command to enter

information into a record. The RC command displays the record whose record

number you give in the command. You can display a filled record or an empty

record. Unlike the RV (ReView records) command, which displays all the records

in a series, the RC command displays only one specific record. Once the record is

displayed, you can make changes if you like.

When you display an empty record, you can enter information into it. Unlike

entering records with the NR (Next Record) command, the RC command does

not automatically move to the next record after each record is entered. Use RC

when you are entering just a few records at a time, and use NR when you are

entering a series of records.

To use the RC command to display a record, type RC and the record number

of the record you want to display followed by a semicolon.

To use the RC command to enter a record, follow these steps:

1. Issue a TF command to display the record number of the last record entered if

you are adding records to a previously stored file.

2. Issue an RC command to display the first record you are going to enter. If you

are entering records into a new file, the first record would be RC1;, and if you

are adding records to an old file, the first record would be 1 plus the record

number named in the TF command as the last record entered.

3. Store the first record with the UD (UpDate record) command.

4. Issue another RC command to enter the next record. You must enter another

RC command for each record you enter.

5. Store each record with the UD (UpDate record) command.

Example: rc3; Displays record number 3, which may or may not be a filled record.

You can view it or change it if it is filled, or you can enter informa

tion if it is not filled.

RESETLIST FM

Cancels any type of subfile. The RESETLIST command disbands sorted

subfiles, searched subfiles, and subfiles set by the HIGHRC or PI (Pick) com

mands. RESETLIST has no effect on the contents of the records; it is NOT like

the spreadsheet RESET command.

Section 4. The File Manager 147

Because RESETLIST restores the file to its original organization, you should

use it before you create a subfile when you want to be sure a previous subfile does

not affect your current project.

Example: resetlist Restores the file to its original organization by canceling a

subfile.

RV FM

Displays the records in order. If the file has been reorganized into a subfile, the

records are displayed in subfile organization with the actual record number also

displayed on the screen. The RV (ReView) command starts with the record whose

number you give in the command and continues through the file, displaying each

record quickly.

To speed up the review, press the space bar. To slow it down, press the S key.

To end the review, press the Q key.

Use the RV command to make a quick review of a new file or a newly created

subfile or to scan for a particular record whose number you do not remember. To

use the RV command, type rv and the number of the first record you want to

review, followed by a semicolon.

Examples: rvl; Quickly displays all the records in the file or subfile, starting at

record 1.

rv25; Starts the review at record 25.

SR FM

Looks through records to find those that contain data you specify. You can

search for any letters or numbers up to 38 characters in length. The SR (SeaRch)

command searches every field; the search is for a character match rather than for

the contents of a specific field. In other words, the SR command does not search

just one field in each record. The search criteria cannot spread into two fields. For

example, if you are searching for New York and the words New and York appear

in separate fields in a record, this is not considered a match.

To use the SR command, type sr and,press RETURN. When the prompt

SEARCH is displayed, type the characters you want to find in the records. Unlike

the PI (Pick) command, the SR command does not distinguish between upper

and lower case letters, so Computer and computer are considered equal.

If there is no subfile, the SR command begins its search with record 1 and

sequentially investigates every record in the field. If there is a subfile, the SR

command searches records according to the organization of the subfile.

As a search executes, each record that contains a match is displayed. The

message CONTINUE Y/N is also displayed. If you want to continue searching

for more instances of a match, type Y. If you want to abort the search, type N.

148 The Built-in Software

Example: sr

SEARCH: 1919

TC WP, FM

Initiates a search that will look through each field in

each record to find the numbers 1919.

Lets you switch to the spreadsheet program. You can issue the TC (To the

Calculator) command at any time. Use the TF command to switch back to the file

manager.

Example: tc Switches to the spreadsheet program.

TF WP, SS, FM

In the file manager, the TF command tells the computer you want to use an

already stored file. Enter TF to use an old file when the file manager displays the

message TYPE TF OR NEWTF. You can issue a TF command at any time to

display the record number of the last record entered. This information is useful

when you are about to add more records to a file.

The TF command displays the following information about the current file:

The file name

The number of records used of the original 999

The record number of the last record entered

If a subfile has been created and is still in effect, the top of the status report

displays the number of records in the subfile. The last record entered is displayed

on the second line of the status report.

Example: tf Displays information about a stored file and about a subfile if one is

present.

TW SS, FM

Lets you switch to the word processor program. You can issue the TW

command at any time. Use the TF command to switch back to the file manager.

Example: tw Switches to the word processor program.

UD FM

Stores a record on the disk. Use the UD (UpDate) command after you enter or

change a record with either the RC (ReCord) or NR (Next Record) command.

Section 4. The File Manager 149

The UD command stores the current record with the record number currently

displayed unless you specify some other record number in the UD command.

You can also use UD as a shortcut to make duplicates of a record or when you

want to store a record that is almost identical to the current record. To store a

record with a record number other than the one displayed on the screen, just

include a record number in the UD command. For example, if you are storing

records of a stamp collection and have two similar stamps, enter and store the

first stamp as record 1. Then change the record while record 1 is still displayed on

the screen. Save this version of the record with the command ud2;.

Examples: ud Stores the current record.

11(137; Stores the record information currently on the screen as record

number 37.

Some Programming

Techniques

The BASIC built into the Commodore Plus/4, Version 3.5, is the most powerful

and versatile version of BASIC that Commodore has ever used in a computer.

This chapter explains some of the major programming techniques you can use in

writing BASIC programs as well as a few machine language techniques. These

include the following topics:

Using the screen editor

Using the Escape key screen editing functions

Using screen windows

Using text strings

Redefining the function keys

Using mathematical functions

Programming sound and music

Using arrays

UnNEWing programs

Using the built-in error-trapping routines

Each of these topics is covered in a separate section of the chapter. Sample

programs are used to illustrate the use of each technique.

For explanations of all BASIC commands, see Chapter 1. For extensive

information on programming graphics, see Chapter 4. For in-depth descriptions

of commands for handling disk drives and other peripherals, see Chapter 6.

180

Using the Screen 151

Using the Screen

The computer screen is 40 columns by 25 lines, which means it can display 1000

characters at a time. These 1000 character places have their own locations in

memory in what is called the Screen Memory Map.

The top left corner of the screen has a memory address of 3072 ($0C00). The

character just to the right of that location has an address of 3073. The bottom

right corner of the screen is at address 4071 ($0FE7). Each character position on

the screen has a specific address.

Each time you type a character or the computer displays one, the computer

updates the screen memory at the character position where the new character

appears. For example, if you type SCNCLR, the computer clears the screen and

displays the READY, prompt on the second line of the screen. At this point,

screen memory address 3112 contains an R, address 3113 contains an E, and so

on. All other screen memory addresses contain a blank. The values stored in

screen memory to display characters are not the same as CHR$ code values. See

Appendix E for a list of screen display codes.

A screen memory location is updated every time that character position gets a

new value. When a line moves up because the screen scrolls up, the characters in

the line are removed from the old memory locations and are registered in the new

locations. Screen memory has only one task: to keep track of each character

position on the screen. It does not evaluate the text on the screen for errors; that is

done by the computer when you press the RETURN key.

POKEing and PEEKing

You can use the POKE command to put a specific character at a specific screen

location. Use the screen memory locations and the screen display codes listed in

Appendix E (not the CHR$ codes) in POKE commands.

You can also POKE a color into the color memory location corresponding to a

character position. The color of each character position is registered separately

from the character itself. The color memory map, which is similar to the screen

memory map, begins at memory location 2048 ($0800) (the top left corner of the

screen) and ends at location 3047 ($08E7) (the bottom right corner of the screen).

Examples: 10 INPUT'TLAYER'S SUIT";S$

20 IF S$ = "HEARTS"THEN Puts a red (color = 3-1; luminance

POKE 3441,83: POKE 2417,2+16*4 = 4) heart symbol at column 9,

row 9 (columns and rows counted

fromO).

182 Some Programming Techniques

You can find out what value is at a memory location by using the PEEK

function. PEEK returns the code that stands for the current occupant of the

memory location into which you are PEEKing. For example:

PRINT PEEK(3441) Displays the screen display code for the character

83 at screen memory location 3441.

You can POKE and PEEK values at memory locations other than just the

screen memory.

Program Lines

Each program line can take up to 88 characters, which is just over two lines on the

screen. If a line is longer than 88 characters, the computer rejects the line and

displays the 7STRING TOO LONG ERROR message as soon as you press

RETURN.

The computer requires a RETURN key press for every program line. When

you press RETURN, the computer interprets the BASIC and stores it in the

program area of memory as tokenized BASIC. If there is already a line with that

line number in memory, the old line is replaced by the new line. When you return

to a line to make changes, you must press RETURN to register the changes, and

you can press RETURN anywhere in the line.

Using the abbreviations for BASIC keywords can allow you to fit extra

commands on a line. When the line is printed, the keywords are spelled out. This

means you cannot cursor up to the line and reenter it using the RETURN key.

You must retype such long lines to change them.

Copying Program Lines without Retyping

When you enter program lines, the information is stored in program memory and

(as long as the lines appear on the screen) in screen memory. These memory areas

operate independently, so you can change one area without necessarily changing

the other. For example, if you go back to a line and make some changes, those

changes are immediately updated in screen memory. The changes are not updated

in program memory, however, unless you press the RETURN key while you are

somewhere on that program line. If you do not press RETURN andjust move off

the line with a cursor key, the changes are not entered into program memory even

though they are registered in screen memory. The contents of screen memory last

only as long as the information appears on the screen.

When you are typing in a program, you can save time by taking advantage of

the computer's screen editing features. If you are typing a line that is similar to

one already on the screen, you can cursor to that line, change the line number and

Using the Screen 153

anything else in the line, and then press RETURN. The computer accepts the line

with the new number and retains the old line, too, as long as you remember to

change the line number. If you forget to change the line number, the modified

version of the line will replace the original version.

The program area ofmemory is not the same as screen memory, so even though

the old line has been overwritten in screen memory, both lines can be intact in

program memory. You can verify that both copies of the line are in program

memory by LISTing the program. For example, type this line and press

RETURN:

10 INPUT^WHAT'SYOURlTAME^jNl

Now cursor back to the line number. Change it to 20, cursor to YOUR NAME

and change it to THE DATE, delete the E from NAME, change N$ to D$, and

press RETURN. The screen should look like this:

20 HTPUT^WHAT'S THE DATE";D$

Line 10 no longer appears on the screen, but it is still in program memory. Issue

a LIST command to display the program, which should look like this:

10 ^

20 INPUT//WHAT/S THE DATE";D$

Remember to press RETURN after you make changes to a line (if you want to

keep the changes, that is). It is a good idea to LIST a program after you make

changes so that you can verify that the changes were made in program memory.

Even experienced programmers sometimes forget to press RETURN.

Quote Mode

When you type a quotation mark, quote mode is turned on and everything you

type is subject to quote-mode rules. Quote mode is turned off when you type a

second quotation mark, when you press the RETURN key, or when you issue an

ESCAPE O sequence.

The following rules define quote mode:

1. The computer does not interpret any characters typed inside quotes, so you can

type anything in quotes without getting a SYNTAX ERROR message when

you execute the command. All non-BASIC characters can and must be

enclosed in quotes except information appearing in REM or DATA statements.

2. Commands do not execute in quote mode.

184 Some Programming Techniques

3. Many key functions, such as cursor-control and color-change keys, do not

execute immediately. When you press one of these keys, a special reversed-

image symbol is displayed. These symbols stand for keyboard-controlled

functions that do not execute until the quote mode is turned off and the

command is run.

Insert Mode

When you press the INSERT key, you enter insert mode. While you are in insert

mode, some key functions, such as cursor control and color change keys, do not

execute immediately. When you press one of these keys, a special reversed-image

symbol is displayed. These symbols stand for keyboard-controlled functions that

do not execute in insert mode. They will not execute at all unless they are also in

quote mode. In fact, you end up with a syntax error if you leave one of these

function symbols in a command, so be sure to delete them unless they are in

quotes and you want them to remain.

Insert mode ends when you type as many characters as the number oftimes you

pressed the INSERT key, when you press RETURN, or when you issue the

ESCAPE O sequence. If you want to get rid of the inserted spaces without

pressing RETURN or typing characters, press the DELETE key until the inserted

spaces are deleted. The DELETE key does not actually start deleting right away.

A reversed T is printed in the inserted spaces until they are all filled.

Note that these deferred restrictions do NOT apply when you are in automatic

insert mode, which you enter by pressing ESCape and A and cancel with ESCape

C.

Table 3-1 shows the keys that do not execute in quote mode. This table also

shows the one-character symbols that represent these keys.

You can directly embed the symbols for most ofthese functions in quote mode

by pressing the indicated keys. The exceptions are the REVERSEd codes. RE-

VERSEd H, I, and N can be entered in quote mode by pressing CONTROL H, I,

and N. For REVERSEd SHIFTed N and M, leave a blank space in the quote

mode text string where you want one of these functions to appear. Then exit

quote mode and cursor back to the blank space in the text string. Once you are in

position, turn on reverse mode (with CONTROL 9) and press the appropriate

SHIFTed key. The symbol from the chart is displayed in the text string, and the

function is deferred until you execute the command that contains the text string.

Clearing the Screen During Program Execution

You can use the CLEAR key to clear the screen during program execution. To

use this key, press SHIFT/CLEAR in quotes in a command such as PRINT or

INPUT, or use the CHR$ code for the CLEAR key, which is 147.

Using the Screen 188

Table 3-1. Special Quote Mode and Insert Mode Characters

Key Displays Function Embedded

CURSOR UP

CURSOR DOWN

CURSOR LEFT

CURSOR RIGHT

INSERT

DELETE

CLEAR

HOME

CONTROL BLACK

CONTROL WHITE

CONTROL RED

CONTROL CYAN

CONTROL PURPLE

CONTROL GREEN

CONTROL BLUE

CONTROL YELLOW

K8 ORANGE

G BROWN

C YELLOW-GREEN

£8 PINK

88 BLUE-GREEN

Kg LIGHT BLUE

SB DARK BLUE

SS LIGHT GREEN

CONTROL RVS ON

CONTROL RVS OFF

CONTROL FLASH ON

CONTROL FLASH OFF

REVERSED H

REVERSED I

REVERSED SHIFT M

REVERSED N

REVERSED SHIFT N

i i

Move the cursor up a line.

Move the cursor down a line.

Move the cursor left a space.

Move the cursor right a space.

Prepare to insert a character.

Delete a character.

Clear the screen.

Send the cursor to upper left.

Make character color black.

Make character color white.

Make character color red.

Make character color cyan.

Make character color purple.

Make character color green.

Make character color blue.

Make character color yellow.

Make character color orange.

Make character color brown.

Make character color yellow-green.

Make character color pink.

Make character color blue-green.

Make character color light blue.

Make character color dark blue.

Make character color light green.

Turn on reversed mode.

Turn off reversed mode.

Turn on flashing.

Turn off flashing.

Disable ffi SHIFT keys.

Enable -Q SHIFT keys.

Disabled RETURN character.

Switch to upper/ lower case.

Switch to upper case/graphics.

Note: The uppercase characters shown boxed above appear reversed on your screen.

186 Some Programming Techniques

Example: 10 INPUT "PROJECT HAME";P$
SO PRINT CHR$(147);"A REPORT ON ";P$

Instead of using the CHR$ code for the CLEAR key, you can type the opening

quote, press the CLEAR key (with SHIFT), and then type the rest of the PRINT

message. The CLEAR key appears in quotes as a reversed heart.

20 PRINT "E2IA REPORT ON ";P$

You can use the SCNCLR command in a program line to clear the screen

during program execution. SCNCLR has no parameters.

Example: 10 INPUT "PROJECT NAME";P$

15 SCNCLR

20 PRINT "A REPORT ON ";P$

Clearing Graphic Mode Screens

To clear a graphic mode screen while you are in a graphic mode, use SCNCLR.

When you issue SCNCLR in a graphic mode, only the graphic mode screen is

cleared. When you issue a SCNCLR command in a text mode, the text screen is

cleared, but the graphic mode screen is not cleared. When you issue a SCNCLR in

a split-screen graphics mode, both the text and graphics mode screens are cleared.

If you are just issuing the GRAPHIC command to enter a graphic mode, clear

the graphic mode screen by adding a ,1 to the end of the GRAPHIC command

(e.g., GRAPHIC 2,1).

You can clear the text screen in a split-screen graphic mode screen by pressing

the CLEAR key (with SHIFT), but this is not the best way to clear this area.

When you press CLEAR, the cursor goes to the cursor-home position—the very

top of the screen, which is not visible in split-screen mode. You have to cursor

back manually to the text window at the bottom of the screen. It is much simpler

just to scroll the text out of the text window by pressing the cursor down key five

times. If you do a lot of work in a split-screen mode, you could set a screen

window consisting of the bottom five (text) lines of the screen. Then, a SCNCLR

command or the CLEAR key would clear only the window and leave the cursor at

the top left of the text area of the screen.

Using the Escape Key Functions to Control the Screen

The Plus/4 has 17 ESCape functions that you can use to edit or otherwise control

the screen. These functions, which are explained in subsequent sections, include

the following types of operations:

Using the Escape Key Functions to Control the Screen 157

Scrolling controls

Cursor controls

Deletion and insertion operations

Screen-size reduction

Screen windowing

The ESCape key functions are described briefly in Table 3-2.

ESCape functions are a key sequence of the ESCape key and one other key. To

use any of the ESCape functions, press the ESCape key, release it, and then press

the other key. Be sure to release the ESCape key before you press the second key.

Four ESCape functions have continuous operation after you turn them on:

automatic insert mode, screen window settings, scrolling on and off, and screen

display-size reduction. The other escape functions execute only once; to repeat

them, you must repeat the ESCape key sequence. The four continuous ESCape

functions have their own cancel-function sequences. The one-time-only ESCape

functions cannot actually be canceled because they occur only once, and their

Table 3-2. ESCape Key Functions

Second Escape

Key Function

A Turn on automatic insert mode.

B Set screen window bottom right corner.

C Cancel ESCape A, automatic insert mode.

D Delete the current line.

I Insert a blank line.

J Move the cursor to the beginning of the current line.

K Move the cursor to the end of the current line.

L Turn on normal scrolling.

M Cancel normal scrolling.

N Cancel ESCape R, so normal screen size is reset.

O Cancel manual insert, quote, reverse, and flashing modes.

P Erase all characters from the beginning of the current line to the

current cursor position.

Q Erase all characters from the current cursor position to the end of

the current line.

R Reduce normal screen display size.

T Set screen window top left corner.

V Scroll up one line.

W Scroll down one line.

158 Some Programming Techniques

functions cannot be reversed by a cancellation (although in most cases there is

another ESCape key function that has the opposite effect).

Note: If you press the ESCape key and then decide not to press the second key

in a function sequence, the cursor is temporarily frozen until you press any one

key. Obviously you should not press one of the 17 keys that activate an ESCape

function. You also should not press a function key or the CONTROL or Q keys

because they have no effect. Press the space bar or one of the cursor keys to thaw

the cursor and resume normal operations.

Canceling Insert, Quote, Reversed-Image, and Flashing Modes

You can quickly cancel insert mode, quote mode, reversed-image mode, or

flashing mode by issuing the key sequence ESCape O. Although each of these

modes can be terminated by other means, ESCape O is a convenient alternative.

ESCape O is especially useful for turning off quote mode when you need to make

corrections inside quotes.

Note that ESCape O cancels insert mode only when you turn this mode on with

the INSERT key. ESCape O does not cancel automatic insert mode, which is

turned on with ESCape A and canceled with ESCape C.

Cursor-Control ESCape Functions

You can quickly move the cursor to the beginning or the end of the current line by

using the ESCape J and ESCape K functions. ESCape J moves the cursor to the

first column of the current line. ESCape K moves the cursor to the last character

(not the last column) in the current line. If the cursor is already on or past the last

displayed character on the line, ESCape K has no effect on the cursor. ESCape J

always moves the cursor to column 1 regardless of whether or not there is a

character displayed in that column.

If you use ESCape J or K while the cursor is on a BASIC command that takes

up two lines, ESCape J moves the cursor to the first column ofthe first line even if

the cursor is somewhere on the second line. ESCape K moves the cursor to the last

character of the second line regardless of whether the cursor is on the first or

second line of the two-line command.

Scrolling-Control ESCape Functions

Under normal operating conditions, the screen display scrolls continuously. You

can turn off normal scrolling so that the cursor stops scrolling when it reaches the

current bottom line on the screen. To turn off scrolling, issue the ESCape M

sequence. When scrolling is off, the cursor returns to the top of the screen (in the

Screen Editing 159

same column) when you cursor past the bottom line. Text on the screen does not

move.

To turn normal scrolling back on, issue the ESCape L sequence.

You can make the screen display scroll up or down one line at a time with the

ESCape V and W sequences. ESCape V moves the screen display up one line;

ESCape W moves it down one line. The cursor can be located anywhere on the

screen; it does not have to be at the top or the bottom line. ESCape W always

displays a blank line at the top of the screen as text lines are moved down a line at

a time. ESCape V always displays a blank line at the bottom of the screen as text

lines are moved up a line at a time.

Both ESCape W and ESCape V functions work when scrolling is turned off by

ESCape M. In fact, ESCape V is the only way to scroll the top line off the screen

when normal scrolling is turned off.

Screen Editing

Previous sections in this chapter on screen editing have demonstrated some ofthe

techniques you can use to correct errors, save typing time, clear the screen (orjust

delete some lines from it), and change the screen colors. Besides the features

described in these sections, you can also use the Escape functions to edit the

screen.

1. Inserting and deleting characters and lines on the screen.

2. Changing the screen size.

Insertion/ deletion and changing screen size are especially useful when you are

working on programs.

Automatic Insert Mode

The INSERT key lets you add as many characters as the number of times you

press the INSERT key. We might call this method of character insertion a manual

insert mode. Automatic insert mode, when engaged, lets you insert as many

characters as you like. Automatic insert mode saves time when you want to insert

more than one or two characters.

To turn on automatic insert mode, press the ESCape key and then the A key.

From then until you cancel the mode, all the characters you type are in insert

mode; regular insert mode rules are in effect. The cursor can be located anywhere

on the screen when you turn on automatic insert mode.

When you issue a RUN command while you are still in automatic insert mode

and there is information on the screen beneath the line where you issued RUN,

160 Some Programming Techniques

the output of the execution of the program is inserted above the old data. The old

data are pushed ahead of the execution output.

Canceling Automatic Insert Mode

Cancel automatic insert mode by pressing the ESCape key and then the C key. As

soon as you issue this key sequence, normal conditions return. Note that ESCape

O cancels manual insert mode but not automatic insert mode.

Deleting the Current Line

The ESCape D function lets you erase a line on the screen. To use ESCape D,

move the cursor to the line you want to erase; then press the ESCape key and then

the D key. The current line is deleted, and any following lines are moved up one

line to fill in the gap. You can erase additional lines by repeating the key sequence.

If the line is part of a BASIC line that is longer than one screen line, the entire

BASIC line is deleted from the screen display.

The ESCape D function edits only what is on the screen, not what is in the

program area of memory. This means that lines deleted by the ESCape D

sequence are erased from the screen but not from the program. If you LIST the

program after you use ESCape D to delete a line, you will see that the line is still in

the program. You can use the DELETE command to remove a line from a

program.

Inserting a Blank Line

The ESCape I function lets you insert a blank line between two lines anywhere on

the screen. To use ESCape I, move the cursor to the line where you want to insert

a blank line; then press the ESCape key and then the I key. A blank line is

inserted, and any following lines are moved down one line to make room for the

new line. You can add additional blank lines by repeating the key sequence.

Erasing Partial Lines

ESCape P and ESCape Q erase partial lines. ESCape P erases all characters that

precede the cursor and the character under the cursor. ESCape Q erases all

characters that follow the cursor and the character under the cursor. The cursor

does not move when you execute either of these sequences.

If you are using ESCape P or ESCape Q to erase part of a program line and

Screen Editing 161

that line is longer than 40 characters (i.e., it extends onto the next screen line), the

entire program line is affected, not just the current screen line.

If you press RETURN after you erase a partial line, the part of the line you

erased is deleted from program memory as well as from the screen. If you do not

press RETURN before you leave the line, the original line remains intact in

program memory. If the part of the line remaining would create a syntax error if it

were executed, be sure to correct the line before you run the program. In many

cases after you issue an ESCape P, the remaining characters will create a syntax

error because you have erased the BASIC keyword.

Example: 10 PRINT "THE SECRETARY WILL DISAVOWAL

Y KNOWLEDGE OF YOUR ACTIVITIES"

If the cursor is on the T in SECRETARY and you issue an ESCape P, the line will

look like this (the cursor remains where the T was):

ARY WILL DISAVOWAN

Y KNOWLEDGE OP YOUR ACTIVITIES"

If the cursor is on the T in SECRETARY and you issue an ESCape Q, the line will

look like this (the cursor remains where the T was):

10 PRINT "THE SECRE

Reducing the Screen Display Size

You can slightly reduce the size of the screen display with ESCape R. The normal

screen is 40 columns by 25 lines. The reduced screen is 38 columns by 23 columns.

The size is not optional; if you want to reduce the screen display further, you must

create a screen window. The purpose of the function is to accommodate certain

TV sets that cannot fully display the entire 40-by-25 screen.

As soon as you switch between normal and reduced screen display, the screen is

cleared and the cursor is displayed at the cursor-home position at the top left

corner of the screen. The cursor-home position in reduced screen display mode is

at the column 2, line 2 position of normal screen display mode.

To cancel the reduced screen and return to the normal-sized screen, issue an

ESCape N sequence. The screen clears and the cursor returns to the normal

cursor-home position. Note that ESCape N cancels screen windows. Pressing the

HOME key twice also cancels the reduced screen mode.

Note: The ESCape R sequence changes only the logical size of the screen. A bit

on the graphics chip can be used to bring the border in over the unused row and

columns. See Chapter 4.

163 Some Programming Techniques

Setting a Screen Window

You can create a screen window of any size and in any part of the screen. When

you set a screen window, all new text appears in the window work area. The rest

of the screen contents remain unaffected, so you can view other material while

you use the window work area. If you set the window over any characters already

on the screen, the old characters are typed over.

To set a screen window do the following:

1. Move the cursor to the line and column you want to be the top left corner of the

screen window.

2. Press the ESCAPE key and then the T key.

3. Move the cursor to the line and column you want to be the bottom right corner

of the window.

4. Press the ESCAPE key and then the B key.

After the screen window is set, all text is displayed in the window. The rest of

the screen remains as it was when you set the window. Screen windows are

particularly useful for debugging programs and for working out parts of a

program.

Releasing a Screen Window

To return to full screen display, press the HOME key twice. The cursor appears in

the cursor-home position of a full screen (a reduced screen is forgotten). The

screen is not cleared when you create or release a window.

Issuing an ESCape Function in a Program

There are several ways to include an ESCape function in a BASIC program. For

example, you can type an ESCape sequence in response to an INPUT command.

You can use the CHR$ code for the ESCape key (27), and then the GETKEY

command to input the second key in the sequence:

80 GETKEYA$

90 PRINTCHR$(27)+A$

You can include specific ESCape sequences by using the CHR$ codes for both

keys. In the following example, CHR$(65) stands for A, which turns on auto

matic insert mode, and CHR$(87) stands for W, which scrolls down one line,

Using Text Strings 163

thereby moving the cursor up one line. Line 200 goes back to the message printed

by line 120 and alters the message if X is less than zero after line 130.

100 IITPUTX

ISO PRINT"ACCEPTABLE CONDITIONS"

130 X=X-4

140 IP X>0 THEN 1OO

160 X$=CHR$(27)+CHR$(65)

180 Y$=CHR$(S7)+CHR$(87)

200 PRINT Y$+X$+"WARNING! UN";

RUN

? 3

WARNING! UNACCEPTABLE CONDITIONS

Note that if you set a screen window, turn on automatic insert mode, turn off

scrolling, or reduce the screen display size during a program, these continuous

ESCape functions will remain in effect after the program has finished running.

Using Text Strings

A text string can contain up to 255 characters, including blank spaces. Any

character can appear within a literal constant text string except for a quotation

mark. A quotation mark delineates the opening or closing of a literal constant

text string and cannot appear as a character within a string. If you want to include

a quotation mark within a text string, you must use the CHR$ value for the

quotation mark, which is 34.

Literal constant text strings must be typed in quotation marks except when

they appear as constants in a DATA list. Quotation marks are optional for strings

in a DATA list unless they contain colons or commas.

Text-String Variables

A text-string variable can represent any text string. Text-string variables have a $

sign as the final character in the variable name (e.g., X$, W2$).

When you assign a text string to a variable, you must use a text-string variable.

A TYPE MISMATCH error occurs if you assign a text-string constant to a

different type of variable or you assign a number to a text-string variable. If a

number is included in a text string, the number is considered to be part of the text

string, has no mathematical value, and cannot be used in any mathematical

operation.

An.empty text-string variable is called a null string. It has length zero and can

164 Some Programming Techniques

be created with a literal string constant consisting of only a pair of quotation

marks (with nothing between them).

Input from keys on the keyboard is considered to be a text string, so you must

use a text-string variable to read a key. For example, you must use a string

variable in the GETKEY command to tell the computer to accept a single pressed

key as input.

Note: It is possible to use a numeric variable with a GETKEY command.

Pressing a digit (0-9) results in that single digit's value being assigned to the

numeric variable. Pressing any other key results in an error. The error aborts the

program unless it is TRAPped.

Combining String Values

You can use the plus sign to concatenate multiple text strings, including string

variables and string functions. When you are combining text strings, you must

type the plus sign outside the quotes (e.g., "DATA" + "BASE").

Concatenated strings are compressed into one value. No spaces are added

between two strings (e.g., "DATA" + "BASE" equals "DATABASE"). The strings

are concatenated from left to right.

Use the plus sign in compound function key definitions. For example, to define

a function key to list and then run a program, you can use the following

definition:

KEY 3, "LIST" + CHR$(13) + "RUN" + CHR$(13)

The plus sign is the only arithmetic operator you can use with text strings. You

cannot use the minus sign to remove characters from a string; instead, use the

RIGHTS, LEFTS, and MIDS functions to get substrings.

Comparing String Values

You can use text strings in comparisons just as you use numbers. All six compari

son operators (=, <>, >, <, <=, and >=) can be used to compare text strings.

You cannot compare a text string or text-string variable with a numeric value.

If this illegal comparison is attempted, a TYPE MISMATCH error aborts the

program unless it is TRAPped.

When you use the equal or not equal signs to compare text strings, the

computer reads the strings character by character, checking for an exact match,

including blank spaces. For example, "STRING" <> "STRING" is true be

cause the second string contains a blank space that is not present in the first

string.

Using the String Functions 168

When you use the other comparison operators to compare text strings, the

computer reads the strings character by character-, checking for which string's

current character is greater or less based on the character's character code

number (CHR$ value). A has the lowest value, Z the highest, so characters are

checked for standard alphabetical order, although the comparison is actually

done by numeric values for each letter of the alphabet. Shifted characters are

always greater than unshifted characters. See the CHR$ value list in Appendix C.

When numbers in text strings are compared, the computer treats them as a

character (CHR$) code number. All numbers have lower character codes than

any letter, so 9 is less than A.

Examples of Text String Comparisons

10 INPUT T

SO A$ = "BIT" + STRICT)

30 PRINT "A$ ="; A$

RUN

? 2

A$ = BIT 2

NEW

10 D0:INPTJT K$

20 PRINT "G0":L00P WHILE K$ <> "STOP"

NEW

10 INPUT X$

20 IP LEFT$(X$,1) < "L" THEN
G0SUB 100: ELSE PRINT "PAST RANGE"

RUN

? MIDDLE

PAST RANGE

Makes A$ equal to the

string "BIT" plus the

value of T converted to a

string value by the STR$

function.

Compares the value

input for K$ to the string

"STOP". The loop con

tinues while K$ is not

equal to "STOP".

Checks the first charac

ter of X$, input in line

10. If the character is less

than L (A-K), the pro

gram branches to a sub

routine. Otherwise the

PAST RANGE is

printed.

Using the String Functions

BASIC Version 3.5 contains 14 functions that operate using text strings:

• ASC returns the character (CHR$) code of the first character in the string.

• CHR$ returns the character string represented by its character code.

166 Some Programming Techniques

• DEC returns the decimal value of a hexadecimal string.

• DS$ returns the contents of the disk drive error channel (see Appendix A).

• ERRS returns a message that describes an error condition.

• HEX$ returns a hexadecimal text string for a decimal value.

• INSTR finds a string embedded within another string and returns its start

position.

• LEFTS returns the leftmost characters in a string.

• LEN returns the number of characters in a string.

• MIDS returns a character string within another string or replaces a substring in

a character string.

• RIGHTS returns the rightmost characters in a string.

• STR$ converts numeric values into text strings.

• TIS returns the current value of the system clock.

• VAL converts numbers in a string into a numeric value.

Each of these functions is described in Chapter 1. The following sections of this

chapter provide additional information about some of the functions. More

information about ERRS appears under the section about error-trapping

techniques.

When any of these functions contains a text string as a parameter in paren

theses, you can use any of the following forms of text-string representation:

A literal constant text string

A text-string variable

A text-string array variable

A character code in the form CHRS(code)

A concatenation (using +) of any of the above

Any numeric parameter in a string function can be in any of these forms:

A number

A numeric variable

A numeric array variable

A mathematical formula

Using tlie String Functions 167

The Substring Functions: LEFTf, RIGHTS, and MIDI

The functions LEFTS, RIGHTS, and MIDS can be used to form a substring of a

text string. Use these functions to check input or to assign part of a string to a

string variable. These functions are frequently used in conditional statements.

For example, you can use LEFTS to check the first letter of the input.

Each of these functions can return up to 255 characters, which is the maximum

length of a string. If the substring is longer than the master string, the computer

returns the entire master string (starting from the function starting point).

The parameters for each function are enclosed in parentheses. The first

parameter for each of these functions is the master string, which can be any legal

string. The second parameter in the LEFTS and RIGHTS functions is the length

of the substring. The second MIDS parameter is the starting location for the

substring. The third MIDS parameter is the substring length.

The LEFTS substring begins at the leftmost character in the master string and

continues for the specified number of characters. The RIGHTS substring has the

specified length and ends at the rightmost character in the master string. The

MIDS substring can begin at any character position in the master string and

continues for the specified number of characters.

Examples: 10Y$ = "REDWHITEBLUE"

20 X$ = MID$(Y$,4,5) X$ is the word WHITE.

PRINT LEFT$("RED",4) The string contains only

RED three characters, so

only three are printed.

10 INPUT "DO YOUWANT TO CONTINUE"; A$ Searches text string AS,

20 IP LEFT$(A$,1>"Y" THEN GOSUB 70: input in line 10, for

ELSE END the string Y.

Finding the Length of a String: the LEN(X$) Function

LEN counts the total number of characters in a text string. Any text string can be

counted. Blank spaces and punctuation marks count as characters in the string.

For example "HO HO!" has six characters. You can use any string expression,

even a text-string array element, as the LEN parameter.

The following example uses array elements as string function parameters:

5 DIM P$(49),L$(49)

10 F0RX=0T0 49

20 INPUT "NEXT NAME";L$(X)

30 FE=INSTR(L$(X)," ")

168 Some Programming Techniques

40 IP FE>0 THEN Ft(X)=LEFT$(L$(X),FE-1):

L$(X)=RIGHT$(L$(X),LEN(Lf(X))-FE)

50 PRINT "LAST NAME: ";L$(X);:

IF LEN(F$(X))>0 THEN PRINT " FIRST NAME: ";Ff(X);

60 PRINT:NEXT

LEN can be used to figure a parameter in a LEFTS, RIGHTS, or MID$

function. For example, in the following program, the starting position in the

MIDS function in line 30 uses the LENgth of S$:

10 INPUT "MONTH/DAY/YEAR"; S$

30 PRINT"THIS IS DAY ";MID$(S$,LEN(S$)-4,2);" OF MONTH ";

LEFT$(S$,2)

RUN

MONTH/DAY/YEAR? 12/25/84

THIS IS DAY 25 OF MONTH 12

You can also use the string functions to search input for characters that are not

acceptable for your application. For example, suppose an error will occur in your

program if information being input contains numbers. You can use the string

functions to search each piece of input for a number.

10 INPUT "FULL NAME"; S$

20 FOR 1=48 TO 57

30 Y = INSTR(S#,CHR$(I))

40 IF Y>0 THEN PRINT "ILLEGAL INPUT; CHARACTER";Y;

"IS A NUMBER"

50 NEXT

The INSTR (IN STRing) function finds the starting position of a string

embedded within another string. INSTR searches a text string from left to right

and returns a number that tells you the character position of the first character in

the sought string.

Like the LEN function, INSTR is a numeric function, which means it returns a

number, not a text string. Also like LEN, INSTR works only on a text string

expression, not on a number.

Converting Strings and Numeric Values: STRl andVAL

The STRS function converts numeric values into text strings. You would use this

conversion when you want to use a string function to search the number. There

are no numeric functions comparable to LEFTS, RIGHTS, MIDS, and LEN. So

Redefining the Function Keys 169

when you want to use such a function on a number, first use STR$ to convert the

number to a text string.

Example: T$ = STR$(T): IP RIGHT$(T$,3) The STR$ function converts the

= ".99" THEM" T = T + .01 numeric value of T into a string called

T$. The RIGHTS function reads the

three rightmost characters of T$. If

these characters equal .99, .01 is

added to the value of T.

After you convert a number to a text string, the number loses its numeric

properties, which means you cannot use the number in a calculation. Instead, the

computer treats the stringified number the same way it treats any text string.

After you finish using the number as a text string, you can change it back to a

numeric value by using the VAL function.

The VAL function converts numbers in a string into a numeric value. You can

use VAL to reverse a STR$ function or to extract numbers from any text-string

expression.

When you use VAL on a text string that contains both numbers and non-

numeric characters, the computer converts only the numbers up to the first

nonnumeric character. For example, if you issue the command PRINT

VAL("34R5"), the computer displays only 34; the 5 after the R is not displayed

because the first nonnumeric character turns off the VAL function.

Redefining the Function Keys

You can redefine a function key at any time in immediate mode or within a

program. Any definitions you write are erased from computer memory when you

turn off or reset the computer (unless you hold down the RUN/ STOP key during

the reset). The KEY command lets you write a definition for a function key. The

KEY command also displays the current definitions of the function keys; all

redefinitions written during the current computing session are displayed in this
list.

Follow these steps to redefine a function key:

STEP 1 Type KEY and the key number (to define the HELP key, type an 8)
followed by a comma.

STEP 2 Type the text string for the key definition:

You can define the key to perform multiple tasks in BASIC. Link multiple

BASIC commands and/or functions with plus signs.

If a literal constant string is used for a key definition, it must be in quotes.

170 Some Programming Techniques

Use CHR$ codes in the definition to use quotation marks or a key such as

a return or the ESCape key.

STEP 3 Verify the new definition by issuing a KEY command, which displays

a list of current key definitions.

Examples: KEY 1//INPUT//+CHR$(34) Displays INPUT".

KEY 6/TIST"+CHR$(13)+mUN"+CHR$(13) Issues a LIST command

and a RUN command.

RUN executes as soon as

the program is listed.

KEY 3,CHR$(27)+"TLIST"+CHR$(13) Creates a screen window,

whose top left corner is

the current cursor loca

tion and whose bottom is

the lower right corner of

the screen. After the

window is set, a LIST

command is issued.

Calling a Function Key During Program Execution

The function key definition procedure for defining keys in immediate mode can

also be used in a program. INPUT can be used to accept function key definitions.

Of course, the input must end with a RETURN character from the definition or

the keyboard. GETKEY receives only the first letter of the definition. Also, if

GETKEY is called a second time following the receipt of a multiple character

function key definition, an error results.

To be able to use a function key in a GETKEY command, you must first

redefine the key as a single CHR$ code. This definition allows BASIC to consider

the function key to be a single key, not a string of characters. Once the key is

defined as a single key, you can press the key as input for a GETKEY command.

Then you can use an IF command to see if the key pressed equals the CHR$ code

for the function key and use a THEN clause to perform the desired operation(s).

The following example redefines function keys 2 and 3 to change screen colors,

switch to graphic mode 1, and draw a painted shape.

Note that redefinitions written in a program are still in effect when the program

ends. To restore the original definitions, press the reset button.

10 REM DEFINE KEYS 2 AND 3 AS CHR$ CODES 134 AND 135

20 KEY2,CHR$(134): KEY3,CHR$(135)
30 PRINT "PRESS P2 TO DRAW THE MOON. PRESS P3 TO DRAW

THE Sim."

Redefining the Function Keys 171

40 GETKEYZl: REM PRESS F2 OR P3

50 REM USE ASC TO CHECK THE CHR$ CODE FOR THE PRESSED

KEY

60 IPASC(Z$)=134 THEN

COLORO,1:COLOR1,2:GRAPHIC1,1:CIRCLE,160,100,60,50:

PAINT,160,100

80 IPASC(Z$)= 135 THEN

COLORO,7:COLOR1,8:GRAPHIC1,1:CIRCLE,160,100,60,50:

PAINT,160,100

Changing the Function Key Definitions in Machine Language

The function key definitions are stored in RAM and can be altered in machine

language. The lengths of each function key definition are stored in $055F-$0566.

The definitions themselves (in CHR$ codes) are stored in $0567-$05E6. To

change a definition, not only must the length for the key be changed and its

definition be altered but the data for all of the function keys beyond it must be

moved up or down to meet the new definition. The keys are stored in the

following order:

Key Length Address

Fl

F2

F3

F4

F5

F6

F7

HELP

S055F

$0560

$0561

$0562

$0563

$0564

$0565

$0566

When a function key is pressed, the SCNKEY routine (called by the system

interrupt service routine) places this information in memory separate from the

normal keyboard queue. The information is processed by keyboard read routines

BASIN ($FFCF) and GETIN ($FFE4).

This example changes the definition of the HELP key to whatever the user

types in. The HELP key is the easiest to change because no other definitions are

affected.

Example: . 2000 A9 OD LDA #$0D Carriage return character.

. SOOS SO D2 PP JSR $FPD2 Send to screen.

. 2005 A2 00 LDX #$00 .X points to the definition area.

. 2007 20 CP PP JSR $PPCP Get a character from the keyboard.

SOOA

200D

200P

SOU

2012

2014

2016

2018

2019

201C

9D

C9

FO

E8

EO

90

BO

E8

8E

00

9F 05

OD

07

48

Fl

01

66 05

STA

CMP

BEQ

IWX

CPX

BCC

BCS

INX

STX

BRK

$059F,X

#$0D

$2018

#$48

$2007

$2019

$0566

Store in the HELP key's definition

area.

Look for a carriage return.

When found, quit.

Increment the pointer.

Compare to the maximum allowed.

If not there yet, go on.

If there, quit.

Increment the pointer to get a count

Store count in HELP key length.

Stop processing.

Note: There is an "unofficial" ROM subroutine that redefines a function key.

Store the key to redefine (0 to 7) in $76, the address of the new definition is

$22-$23, load .A with the length of the definition and call the subroutine at

$FF49.

Mathematical Calcinations

This section briefly discusses a few important concepts for using your computer

for calculating.

Number Storage In BASIC there are two numeric variable types. The more

straightforward is the integer variable (signified by attaching a % to the variable

name). An integer variable can have values from -32767 to +32767. Theoretically,

a value of -32768 is allowed. Try the following example program:

10 N%=32768

20 PRIETT

The result will be a -32768. So much for theory.

The second variable type is floating point. The format of floating point number

storage is examined in the section on USR in Chapter 5. The largest magnitude of

a floating point number is 1.70141183E+38, and the smallest magnitude distin

guishable from zero is 2.93873588E-39. The floating point format allows about

nine decimal digits of accuracy.

Speeding Up Calculations The first rule to speed calculations is to do as few as

possible. In particular, unless variable space is at a premium, do not calculate the

same quantity twice. Calculate it once, and save the value in a variable. The

exponentiation function (up arrow) is slow, so avoid it if possible. In particular,

Redefining the Function Keys 173

square a number by multiplying it by itself, get a square root by using the SQR

function, and calculate a reciprocal by dividing 1 by the number.

It is somewhat faster to add a number to itself than to multiply by 2. It is

somewhat faster to divide by 2 than to multiply by 0.5. Subtraction and addition

take virtually the same amount of time.

Logarithms andExponentials LOG(X) returns the logarithm base e (the natu

ral logarithm) of X. The logarithm with respect to a different base, B, can be

found by dividing LOG(X) by LOG(B). The inverse of the logarithm base e (e

raised to a power) can be calculated with EXP. The inverse of the logarithm base

B can be calculated by using the up arrow to raise B to the power.

Trigonometric Calculations An approximation of pi is available by using the

pi key (the Q and equal keys pressed together). This is particularly useful when

the values of trigonometric ratios are desired and the angle is measured in

degrees. The SIN, COS, and TAN functions are available, but each requires the

specified angle to be measured in radians. To translate from degrees to radians,

multiply the angle by pi, and divide by 180.

To calculate the values of the remaining trigonometric ratios, recall that

csc(X) = 1/SIN(X)

sec(X) = 1/COS(X)

cot(X) = 1/TABT(X)

The only inverse trigonometric ratio available is the arctangent (ATN). The value

is returned in radians. To change to degrees, multiply by 180, and divide by pi. To

calculate the values of the remaining inverse functions, recall that

arcsin(A) = ATN(A/SQR(1-A*A))

arccos(A) = ATW(SQR(1-A*A)/A)

arccsc(A) = ATN(l/(A*SQR(l-l/(A*A))))
arcsec(A) = ATN(A*SQR(1-1/(A*A)))

arccot(A) = ATN(1/A)

Rounding Off Numbers When asked to display a number, the PRINT (or

PRINT#) command prints nine digits of precision. If this is not desired, the

PRINT USING command may be used. Or, recall that the number X rounded to
N decimal places is given by

IET(10tW*X+.5)/10t]!ir

174 Some Programming Techniques

RandomNumbers BASIC has a built-in random number function that returns

a floating point number between 0 and 1. When called with a negative argument,

the RND function reseeds the random number generator with the value specified

and returns the first value from this seed. When called with a zero argument, the

RND function reseeds the random number generator from a hardware clock and

returns the first value from this seed. When called with a positive argument, the

next value in the random sequence is returned. To have a different random

number sequence every time the program is run, call RND at zero first, then at 1

(or any positive number) thereafter. To have the same sequence each time, call

RND at a constant negative seed value first, then at 1 (or any positive number)

thereafter.

When a random floating point number between L and H is needed, use

(H-L)*RND(1)+L

When a random integer between L% and H% (inclusive) is needed, use

INT((H%-L%+1)*RND(1)+L%)

Programming Sound and Music

The computer has two voices that can play music and a voice setting that can

create noise. Only two commands, VOL and SOUND, are required to play music

and sound effects.

The VOL Command

The VOL command sets the volume level for tones played by the SOUND

command. The volume level can be from 0 (off) to 8 (highest volume). You must

be sure that the volume selector on your TV or monitor is turned up. The level of

volume set by the VOL command is relative to other VOL settings. The absolute

sound level is set by the volume selector on your TV or monitor.

The volume level remains at the last level set at the end of a program. If you do

not turn the volume off at the end of the program or reset its value, the next

SOUND command plays at the volume last set, even if the next SOUND

command is in a different program.

You must execute a VOL command before the SOUND command, or you will

not be able to hear any sound.

The SOUND Command

The SOUND command selects the tone to be played. The SOUND command has

three parameters:

Programming Sound and Music 175

SOUND voice, tone frequency, duration

1. Voice selects the voice in which the tone is to be played. There are two voices

and three voice settings (the second voice has an alternative setting):

Voice setting 1 plays 1024 tones.

Voice setting 2 plays the same 1024 sounds.

Voice setting 3 plays 1024 settings of noise.

You can play sounds from voices 1 and 2 simultaneously. Because voice setting

3 is an alternative setting for voice 2, you cannot simultaneously play sounds with

voice settings 2 and 3.

2. Tone frequency selects the frequency of the sound to be played. This setting

can be from 0 to 1023. Table 3-3 lists the numerical values for five octaves of

musical notes. Other values play tones but not musical notes. Noise can be played

in voice setting 3.

Note that, although the tones go from low to high, tone value 1023 is the lowest

note and 1022 is the highest. Tone value 0 is virtually as low as 1023. You

probably cannot hear a tone value between 1016 and 1022.

Table 3-3. Numerical Values for Five Octaves of Notes

Note

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

Octave 1

Frequency

7

64

118

169

217

262

305

345

383

419

453

485

Octave 2

Frequency

516

544

571

596*

620

643

664

685

704

722

739

755

Octave 3

Frequency

770

784

798

810

822

834

844

854

864

873

881

889

Octave 4

Frequency

897

904

911

917

923

929

934

939

944

948

953

957

Octave 5

Frequency

960

964

967

971

974

976

979

982

984

986

988

990

*596 is the setting for middle C.

Note: Use the following formula to calculate a frequency value for some other output frequency

(FO):

frequency = 1024 - INT(111860.781 / FO)

The lowest possible frequency is about 109 Hz and the highest is above the audible range (over 20

KHz).

176 Some Programming Techniques

3. Duration selects how long the note is played. The values in the duration

position can be from 1, which equals 1 / 60th of a second, to 65535, which is more

than 18 minutes. You can also use decimal numbers, variables, or calculations as

duration values but only their integer part will be used.

Use this formula to figure duration value:

Duration value = time in seconds x 60

When you are programming a song, the durations of all notes are relative to the

whole-note duration you choose. After you select the duration value for the

whole note, other note duration values are determined by fractions of the whole-

note value.

In this program, voices 1 and 2 are used simultaneously to play two-voice

harmony. Although a frequency value of zero does generate a sound, this pro

gram uses a value of zero to mean a rest (no sound).

Example: 10 VOL8

20 DIMN1%(66),N2%(66)rDl%(66),D2%(66)

30 1=0

40 REArai%(I)fDl%(I):IFNl%(I)<0TOEN60

50 1=1+1:GOTO40

60 T1=I:I=0

70 READN2%(I),D2%(I):IFN2%(I)<0THEN90

80 1=1+1:GOTO70

90 I1=-1:I2=-1

100 IFDl>0mENl30:ELSESOUNDl,Nl,0

110 11=11+1:IFIKT1THEND1=D1% (II) :Nl=Nl%(Il) :ELSE180

120 IFNl>0THENSOUNDl,Nl,300

130 IFD2>0THEN160:ELSESOUND2,N2,0

140 I2=I2+1:D2=D2%(I2):N2=N2%(I2)

150 IFN2>0THENSOUND2,N2,300

160 D1=D1-1:D2=D2-1

170 FORI=0TO80:NEXT:GOTO100

180 VOL0
190 DATA0,1,685,1,770,1,810,1

200 DATA798,1,685,1,798,1,834,1

210 DATA810,2,854,2,755,2,854,2

220 DATA770,1,685,1,770,1,810,1

230 DATA798,1,685,1,798,1,834,1

240 DATA810,2,770,2,0,4

250 DATA0,1,854,1,810,1,854,1

260 DATA770,1,810,1,685,1,739,1

270 DATA704,2,770,2,834,2,864,2

280 DATA864,1,834,1,798,1,834,1

290 DATA739,1,798,1,643,1,704,1

300 DATA685,2,739,2,810,2,854,2

310 DATA854,1,810,1,770,1,810,1

320 DATA704,2,834,2,834,1,798,1

330 DATA739,1,798,1,685,2,810,2

Programming Sound and Music 177

340 DATA810,1,770,1,704,1,770,1

350 DATA643,2,798,2,810,6

360 DATA-1,-1

370 DATA7,2,516,4,485,2

380 DATA516,1,345,1,516,1,596,1

390 DATA571,1,345,1,571,1,643,1

400 DATA596,2,516,2,485,2,345,2

410 DATA516,1,345,1,516,1,596,1

420 DATA571,1,345,1,571,1,643,1

430 DATA596,2,516,2,596,2,516,2

440 DATA643,1,516,1,383,1,516,1

450 DATA262,1,383,1,7,1,169,1

460 DATA118,2,262,2,453,2,571,2

470 DATA571,1,453,1,345,1,453,1

480 DATA169,1,345,1,118,1,118,1

490 DATA7,2,169,2,262,1,383,1

500 DATA118,1,262,1,118,2,118,2

510 DATA169,1,345,1,7,1,169,1

520 DATA7,2,7,2

530 DATA118,1,453,1,383,1,453,1
540 DATA596,6

550 DATA-1,-1

Line-by-Line Explanation

10 Set volume to maximum.

20 Prepare data arrays for notes and durations.

30 I counts the number of notes.

40 Read a note and duration for voice 1; a negative number means done.

50 Increment counter and continue.

60 Tl is the total number of notes for voice 1. Start I over again at 0.

70 Read a note and duration for voice 2; a negative number means done.

80 Increment counter and continue.

90 II and 12 are pointers to the data arrays.

100 If voice 1 is not finished, go on to line 130. Otherwise, stop voice 1.

110 Increment voice 1 pointer. If done, quit. Otherwise, set up note and
duration.

120 If not a rest, start the note.

130 If voice 2 is not finished, go on to line 160. Otherwise, stop voice 2.

140 Increment voice 2 pointer and set up note and duration.

150 If not a rest, start the note.

178 Some Programming Techniques

160 Decrement the durations.

170 Wait briefly. Change the value here to make all the notes longer or

shorter.

180 Turn off the volume.

190-350 Data for voice 1.

360 End of data for voice 1.

370-540 Data for voice 2.

550 End of data for voice 2.

Sound in Machine Language

In machine language, sound is generated by accessing the graphics chip (which

also handles sound) directly. The relevant registers are as follows:

o
Bit(s) Function

$FF0E 0-7 Low byte of frequency for voice 1

$FF0F 0-7 Low byte of frequency for voice 2

$FF10 0-1 High 2 bits of frequency for voice 2

$FF11 0-3 Volume

4 Select voice 1 (0 = off, 1 = on)

5 Select voice 2 (0 = off, 1 = on)

6 Select noise for voice 2 (0 = off, 1 = on)

7 Sound switch (0 = on, 1 = off)

$FF12 0-1 High 2 bits of frequency for voice 1

2-7 Nonsound uses

To generate a sound, first select the voice or voices to use and the volume level

with register $FF11. Normally, it is appropriate to set bit 7 to 1 at this time, to

keep the sound silent for the moment. Note that voice 1 is on or off, but voice 2

can be on for tone, on for noise, or off. If bit 5 is set to 1, voice 2 generates tones,

regardless of the setting of bit 6. Next, set the frequencies in the appropriate

registers. Be careful when setting the two high bits of voice 1 to leave the

remaining bits of register $FF12 unchanged. To start the sound, clear bit 7 of

register $FF11. To stop the sound, set bit 7 of register $FF11 (or deselect the

voices or set the volume to zero).

Table 3-4 shows the hexadecimal note values.

The following program plays the first few notes of Scott Joplin's "The Enter

tainer." Up to 255 bytes of data are stored at $2100 in the format, high byte of

frequency, low byte of frequency, duration.

Programming Sound and Music 179

Table 3-4. Hexadecimal Musical Notes

Note Octave 1 Octave 2 Octave 3 Octave 4 Octave 5

Example:

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

. 2000

. 2002

. 2005

. 2007

. 200A

• 200D

. 2010

. 2012

. 2015

. 2018

. 201B

. 201D

. 2020

. 2023

. 2025

. 2027

♦ 2029

. 202B

. 202D

. 202F

. 2031

. 2033

. 2035

. 2038

. 203A

• 203D

. 203F

• 2041

. 2043

. 2044

7

40

76

A9

D9

106

131

159

17F

1A3

1C5

1E5

A9

8D

A2

BD

8D

AD

29

ID

8D

AD

29

8D

BD

85

A5

29

F0

A5

29

D0

C6

D0

AD

09

8D

A5

29

F0

E8

E8

9F

11

00

01

0E

12

FC

00

12

11

7F

11

02

D8

A5

02

FA

A5

02

FA

D8

F0

11

80

11

A5

02

FA

FF

21

FF

FF

21

FF

FF

FF

21

FF

FF

LDA

STA

LDX

LDA

STA

LDA

AND

ORA

STA

LDA

AND

STA

LDA

STA

LDA

AND

BEQ

LDA

AND

BNE

DEC

BNE

LDA

ORA

STA

LDA

AND

BEQ

INX

INX

204

220

23B

254

26C

283

298

2AD

2C0

2D2

2E3

2F3

#$9F

$FF11

#$00

$2101,X

$FF0E

$FF12

#$FC

$2100,X

$FF12

$FF11

#$7F

$FF11

$2102,X

$D8

$A5

#$02

$2025

$A5

#$02

$202B

$D8

$2025

$FFll

#$80

$FF11

$A5

#$02

$203D

302 381 3C0

310 388 3C4

31E 38F 3C7

32A 395 3CB

336 39B 3CE

342 3A1 3D0

346 3A6 3D3

356 3AB 3D6

360 3B0 3D8

369 3B4 3DA

371 3B9 3DC

379 3BD 3DE

Select voice 1 with maximum volume.

Store in sound selection register.

•X points to the data.

Get the low byte of the frequency.

Store in low byte of frequency for

voice 1.

Get high byte register.

Mask off low two bits.

OR in the high bits of frequency for

voice 1.

Store in high byte of frequency for

voice 1.

Get sound selection register.

Turn on sound.

Store sound selection register.

Get duration of note.

Store in temporary variable.

Get low byte of clock.

Look at bit 1.

Wait until it is set.

Get low byte of clock.

Look at bit 1.

Wait until it is clear.

Decrement duration.

If not done, wait again.

Get sound selection register.

Turn off sound.

Store sound selection register.

Get low byte of clock.

Look at bit 1.

Wait until it is set.

Increment .X by three to point at

next note.

180 Some Programming Techniques9^

2045

2046

2048

204A

E8

E0

90

00

33

BD

INX

CPX

BOG

BRK

———--o

#$33

$2007

Compare to position following last datum.

If not done, continue.

Stop processing.

Here is some example data:

>2100 03 42 OS 03 4C 02 03 56

>2108 02 03 95 04 03 56 02 03

>2110 95 04 03 56 04 03 95 00

>2118 03 Al 02 03 A6 02 03 AB

>2120 02 03 95 02 03 Al 04 03

>2128 AB 02 03 95 02 03 Al 04

>2130 03 95 00 00 00 00 00 00

Using Arrays to Handle Groups of Data

An array, which is also called a matrix, is a set of related values. A two-

dimensional array is organized into numbered "rows" and "columns." The name

of the array and the number of elements the array can contain are established in

an array-DIMensioning command. After an array is defined in a DIM command,

you can use values in the array as individual data items. You refer to any element

of a two-dimensional array by giving the array variable name and the row and

column number in the array where the element is located. This row-and-column

address is called a subscript of the array.

An array can have one, two, or more dimensions. A one-dimensional array has

only a row of data. A two-dimensional array has rows and columns of data.

Arrays with more than two dimensions have more complex data configurations.

You need not be able to visualize multidimensional arrays to work with them

effectively.

You should always DIMension an array before you use it. If you use an array

element without first DIMensioning the array, the computer gives the array the

default number of elements (11). You cannot change the dimensions of an array

after you have DIMensioned it or after you have accepted the default dimensions.

A0^ If you DIM the array after you have used it, or try to reDIM the array, the

v \y^ program aborts and the error message REDIM'D ARRAY is displayed.
The array name is a variable that follows standard variable rules. Arrays

containing text elements must have text-string variable names. Arrays containing

numeric elements must have a numeric variable name.

The subscripts set the number of rows and columns in a two-dimensional

array. Rows are listed first. If you are using a one-dimensional array, there is no

column number.

Using Arrays to Handle Groups of Data 181

The first element in an array is numbered 0, not 1. This means that an array

dimensioned as (5,3) actually has 6 rows and 4 columns, or 24 elements. When

you figure the number of elements in an array, add 1 to each dimension, then

multiply the results of the additions. For example, if the array is dimensioned

DIM K(2,4), the array contains (2 + 1) * (4 + 1) = 15 elements.

The following example uses a two-dimensional array to input and print data.

The printed data in line 80 shows how array elements are assigned in a two-

dimensional array.

10 DIMA(S,3)

20 F0RY=0T02

30 F0RX=0T03

40 INPUT"NEXT ELEMENT";A(Y,X)

50 NEXTX.Y

60 FORY=0TO2

70 F0RX=0T03

80 PRIlTT"ROW";Y;"COLUM]Sr";X;//EQUALS";A(Y^:)

90 NEXTX.Y

The following example uses a one-dimensional array and a two-dimensional

array to keep track of data. The program creates a 4-by-4 letter grid like the one

used in the game Boggle. Array B contains numbers for the current 16 letters to be

used in the grid. Array N$ contains the 50 letters that can become part of the grid.

10 DIMB(3,3):DIMN$(49)

15 DATA A,B,C,D,E^1,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,XT,V,W)X,Y,Z

20 DATA A,E,I,O,UA,E,I,U,OrA,E)I,O,R,S,T,]Sr)M)R)S,T,W,M

25 REM ASSIGN NUMBERS TO LETTERS

30 FORY=0TO49

40 READ N$(Y)

50 NEXTY

52 X = RND(0):REM SEED RANDOM NUMBER GENERATOR

53 PRINT

55 REM RANDOMLYASSIGN NUMBERS TO SQUARES

60 F0RX=0T03

70 F0RW=0T03

80 B(X,W)=INT(RND(l)*50)

100 PRINTN$(B(X,W));

110 NEXTW:PRINT:NEXT X

The FOR . . . NEXT loop in lines 30-50 assigns a letter value to the elements

of array N$ so that array element N$(0) equals A, N$(l) equals B, and so on. We

use 50 elements instead ofjust 26, so we can assign common letters to more than

182 Some Programming Techniques

one number, which increases the chances that the common letters are chosen as 1

of the 16 letters in the grid.

Lines 60-110 randomly generate 16 numbers between 0 and 49. In line 100 the

chosen element of array N$ is printed. The nested loops are used to force the

computer to print four letters next to each other on a single row. The PRINT in

line 110 forces the computer to print the next four letters on a new line.

The next example uses two one-dimensional arrays to sort a list of names into

alphabetical order. Array N$ contains the names that are to be sorted. Array K is

the key file that contains the numbers used to produce and print a sorted list of

names. This sorting technique, which is called a bubble sort, uses the key file to

expedite the sorting procedure. The key file is sorted as the names are compared;

the name file itself is not actually sorted. As soon as the loop in lines 180-260

determines which of the two current names is first, the next name is retrieved from

the N$ array. Elements of array K are sorted in line 240 when name N$(K(Y)) is

greater than the next name, N$(K(Y+1)).

Line 300 prints the unsorted array N$ and the sorted names, which are accessed

in the sorted order by using the sorted key file, array K.

5 DATA JOE,JAYfA^EfJIM,DANrCATHERINE/SARAH,GLENN/GERRYfTERRYfBRUCEfJOHN

10 DATA BOB,LIB,OLIVER,STELLA,MARCIA,DAVE,MARY LOU,CATHY,JACK,END

15 REM COUNT HOW MANY NAMES ARE TO BE SORTED

20 READN$:IFN$="END"THEN 60

40 N=N+1

50 GOTO 20

60 RESTORE

70 REM DIMENSION ARRAYS WITH THE NUMBER OF NAMES TO BE SORTED

71 REM N$ HOLDS NAMES; K IS A KEY FILE THAT ASSOCIATES A NUMBER WITH A

NAME

80 DIMN$(N),K(N)

90 REM READ NAMES FROM THE DATA LIST

100 FORX=1TON

120 READN$(X)

130 REM ASSIGN ARRAY N$ ELEMENT NUMBER TO KEY FILE

140 K(X)=X

160 NEXTX

180 FORX=NTO1STEP-1

200 FORY=1TOX-1

210 REM SEE WHICH OF TWO NAMES COMES FIRST ALPHABETICALLY

220 IFN$(K(Y))<=N$(K(Y+1))THEN 260:REM THEN GO GET NEXT NAME

230 REM IF THE 1ST NAME IS > THE 2ND, ELEMENTS IN KEY FILE ARE REVERSED

235 REM THIS IS KEY TO SORT: ONLY KEY FILE IS SORTED;

ITS SORT IS BASED ON VALUES TAKEN FROM ARRAY N$

240 T=K(Y):K(Y)=K(Y+1):K(Y+1)=T

260 NEXTY,X

270 REM PRINT UNSORTED AND SORTED LISTS

280 PRINTCHR$ (18) "UNSORTED11,TAB (10) "SORTED"

290 REM N$(X) PRINTS UNSORTED NAMES; KEY FILE IS USED TO PRINT SORTED

NAMES

300 FORX=1TON:PRINTN?(X),TAB(10)N$(K(X)):NEXT

XJnNEWing Programs 183

UnNEWing Programs

Ifyou issue a NEW command and immediately regret it, you can try to restore the

program. If you or one of your programs executed a GRAPHIC command

during the current session and no GRAPHICCLR command has been executed

since, use $4000 instead of $1000 in the following steps:

1. Enter the monitor by issuing the MONITOR command.

2. Examine memory starting at $1000 by typing M 1000.

3. Scan along the resulting memory dump to find the end of your first program

line. If you are lucky, you can recognize it from the text you used. If not, check

the token list in Appendix B. The end of the line is marked with a zero byte (but

this may not be the first zero byte you encounter). Note the address of the

location following the zero byte (the first location of the next line). Cursor to

the location $1001 in the dump and enter the low byte of the address there, and

the high byte in $1002 (and press RETURN).

4. Continue looking at the memory dump (issue additional M commands if

needed) until you find the end of your program. It is marked by three zero

bytes. Note the address of the location following the three zero bytes (the first

unused location). Display locations $2D and $2E by typing M 2D 2D. Enter

the low byte of the address in location $2D and the high byte in $2E (and press

RETURN).

5. Exit the monitor by typing X. Your program should be back.

Example: Suppose you had typed in the following program (and not yet saved it to tape or

disk).

10 PRINT"I AM A LITTLE KITTY"

SO PRINT"MY NAME IS NICKY"

30 DO WHILE A$=""

40 PRINT'MEOW"

50 GETA$

60 LOOP

Then you typed:

NEW

Here is what would happen when you unNEWed the program:

MONITOR

MONITOR

184 Some Programming Techniques

PC SB,

; OOOO 00

M 1000

>1000 00

>1008

>1010

>1018

>1020

>10S8

>1030

>1038

>1040

>1048

>1050

>1058

AC XR YR SP

00 00 00 F8

SO

54

54

99

45

4B

EB

22

4D

32

3C

00 00

41 4D

54 4C

59 22

22 4D

20 49

59 22

20 PD

00 4E

45 4P

00 Al

00 EC

OA 00

20 41

45 20

00 34

59 20

53 20

00 42

20 41

10 28

57 22

41 24

00 00

99 22

20 4C

4B 49

10 14

4E 41

4E 49

10 IE

24 B2

00 99

00 56

00 5C

00 00

49

49

54

00

4D

43

00

22

22

10

10

00

Note that the first line ends at $ 101A and that the location following the zero is

$101C. So cursor up to the first line of the memory dump and change $1001 and

$1002. Now the first line of the dump is:

>1000 00 1C 10 OA 00 99 22 49 :1 "I\

Note that the last line ends at $105A (the token for LOOP is $EC) and that the

location following the three zeroes is $105E.

M 2D 2D '
>002D 03 10 03 10 03 10 00 PD : 1 1

Change $2D and $2E so that the dump is

>002D 5E 10 03 10 03 10 00 PD P^l

X

READY.

LIST

10 PRINT"I AMA LITTLE KITTY"

20 PRI1TT"MY NAME IS NICKY"

30 DO WHILE Af|=""

40 PRim"'ME0W"

50 GETAl

60 LOOP

READY.

Your program is restored.

Using the Built-in Error-Trapping Routine 18S

Using the Built-in Error-Trapping Routine

The TRAP command lets you prevent a program from being aborted because of

any BASIC error condition except an UNDEFINED STATEMENT error.

TRAP catches the error and branches to the line number named as the TRAP

parameter. At this line number, you can write any sort of error-handling and/or

error-reporting routine. You should use RESUME to resume execution after

completing your error routine. Using a GOTO to leave a trap routine causes

BASIC to think it is still in the TRAP routine (unless it receives another TRAP

command). Because errors inside TRAP routines cannot be trapped, it is best

never to leave a trap routine through a GOTO. RESUME reexecutes the line in

which the error occurred. RESUME NEXT resumes executing at the statement

following the error. RESUME linenumber resumes execution at the specified line

number. Error trapping can be turned off by using a TRAP command with no

line number. Error trapping is also turned off by a CLR command.

TRAP does not trap disk drive errors (read from the disk error channel) or

other errors not generated by BASIC. For a list of all the BASIC errors. See

Appendix A.

Example: In this program, a DIVISION BY ZERO error can occur if 0 is input as a value

for X. The error is trapped, and the line number (EL), error number (ER), and

error message (ERR$(ER)) are printed before execution resumes with the

INPUT statement. The program prints out 10 valid results. An input resulting in

an error is not counted because execution resumes at 30.

10 TRAP60

20 FOR 1=1 TO 10

30 INPUT Y,X

40 PRINT Y/X

50 NEXT:END

60 PRINT 'TINE'';EL;/'ERROR/';ER;ERR$(ER)

70 PRINT X:RESUME 30

Line-by-Line Explanation

10 Turn on error trapping with trap routine starting at line 60.

20 Count 10 valid results.

30 Get values for X and Y.

40 Print Y divided by X.

50 Go on to next result, and quit when done.

60 Print out line number, error number, and error message,

70 Print out the value of X and resume program execution at 30.

4 Programming Graphics

The graphics statements built into BASIC on the Plus/4 make graphics treatment

in BASIC almost entirely different from that of machine language. No detailed

knowledge of the graphics chip itself is required to do sophisticated high-

resolution and multicolor graphics on the Plus/4. But, of course, most machine

language programmers will need to control the chip's functions directly. This

chapter is therefore divided into two sections: the first primarily for the BASIC

programmer and the second primarily for the machine language programmer.

Graphics Programming in BASIC

All the BASIC statements used in this chapter are detailed in Chapter 1. When

you need additional information on the use and parameters of a BASIC state

ment, refer to that chapter.

Color and Lrnninance

Your Commodore Plus/4 is capable of producing 16 different colors. Each of

these colors may be modified into eight shades (the eight shades of black are

indistinguishable). This means that the Plus/4 can produce 121 different colors.

In BASIC there are five sources for the colors on the screen. The color for each of

these sources is chosen with the COLOR statement.

COLOR sourcefoolor,luminance

Depending on which graphic mode the Plus/4 is in, different color sources are

available for text and graphics. The uses of color in each mode are explained in

this chapter. The value for color chooses the color:

186

Graphics Programming in BASIC 187

Value Color Value Color

1

2

3

4

5

6

7

8

black

white

red

cyan

purple

green

blue

yellow

9

10

11

12

13

14

15

16

orange

brown

yellow-green

pink

blue-green

light blue

dark blue

light green

The value of luminance is optional and can be 0 (dark) through 7 (light). The

COLOR statement uses a luminance of 7 if you do not specify a value.

The following example program displays all of the colors ofyour Plus/4 on the
screen.

Color and Luminance Example Program

10 C0L0R0,S,6

SO GRAPHIC!,1

30 X=0

40 PORC=1TO16

50 Y=0

60 FORL=0TO7

70 COLOR1,C,L

80 BOX1,X,Y,X+16,Y+16,,1
90 Y=Y+16

100 1TEXTL

110 X=X+S0

ISO NBXTC

130 COLOR1,1,0:CHAR1,16,SO,"HIT KEY"

140 GETKEYK&GRAPHICO

Line-by-Line Explanation

10 First change the background color to a light gray.

20 Put the Plus/4 into high-resolution graphics mode.

30 Start the x-coordinate of the display at zero.

40 Go through the 16 available colors.

188 Programming Graphics

50 Start the y-coordinate of each column at zero.

60 Go through the eight available shades for each color.

70 Set the foreground color to the current color and shade.

80 Draw a box with the foreground color and fill it with color.

90 Adjust the y-coordinate for the next box.

100 Use the next luminance value.

110 Adjust the x-coordinate for the next column.

120 Use the next color value.

130 Change the foreground color to black and write "HIT KEY" on the screen.

140 Wait for a keypress and return to text mode.

Text Mode

The normal mode of the Plus/4's operation is text mode. In text mode, you can

PRINT alphanumeric and graphic characters onto the Plus/4 screen. When you

need to return to text mode after using another graphic mode, use

GRAPHIC 0.clear flag

The 0 tells the Plus/4 to return to text mode. The clear flag is an optional

parameter. If it is 1, the text screen is automatically cleared. If it is not present or is

0, any text previously placed on the text screen remains there. You can also return

to text mode by using the GRAPHICCLR command. This command also frees

the 12K reserved for the graphics screen for use by your program.

In text mode there are three possible color sources. The background and

border of the screen are colored with

COLOR 0,color,luminance

for the background, and

COLOR 4,color,luminance

for the border. The color of the characters themselves can be controlled with

COLOR 1,color,luminance

Graphics Programming in BASIC 189

Characters can be placed on the screen with the PRINT (and PRINT USING)

and CHAR statements. Each character has its own foreground color. That means

you can PRINT every character in a different color. Using the COLOR statement

to change colors that often is cumbersome, so BASIC has color control charac

ters you can include in a text string to change the color. There are only 16 of these

control characters, so you can choose only 16 colors by this method. Their default

values are shown in Table 4-1. The color and luminance assigned to each color

key are normally determined by the contents of 275-290 ($0113-S0122). These

locations can be altered, thereby altering the meanings of the color keys. Also, the

Plus/4 can be instructed to get the values of the color keys from ROM by setting
the high bit of 2041 ($07F9) to 1, in which case Table 4-1 applies.

If you press the color keys in quote mode (see Chapter 3), a graphics character

is included in the string you create. The color changes when the string is printed. If
you press the keys at any other time, the color of the characters you type from

then on is changed. If you include the CHR$ code of the color in a string you
print, the color changes when the string is printed.

Other control characters can be included in text strings.

Table 4-1. Color Keys

CHR$

144

5

28

159

156

30

31

158

129

149

150

151

152

153

154

155

Keys

Control 1

Control 2

Control 3

Control 4

Control 5

Control 6

Control 7

Control 8

K§ 1

Kg 2

£§ 3

S3 4

£§ 5

£§ 6

£§ 7

K§ 8

Color

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Luminance

0

7

3

6

4

3

4

7

4

2

5

6

5

6

2

5

Black

White

Red

Cyan

Purple

Dark green

Blue

Yellow

Orange

Dark brown

Yellow-green

Pink

Blue-green

Light blue

Dark blue

Light green

mu *^«^

CHR$

18

146

130

132

8

9

14

142

17

145

29

157

19

147

mm mm wgy— ••' 0 — mW

Keys

CONTROL 9

CONTROL 0

CONTROL,

CONTROL.

CONTROL H

CONTROL I

CONTROL N

Reverse SHIFT N

Cursor Down

Cursor Up

Cursor Right

Cursor Left

HOME

SHIFT HOME

Function

Turns on reverse printing.

Turns off reverse printing.

Turns on flashing.

Turns off flashing.

Disables G SHIFT.

Enables gg SHIFT.

Switches (whole screen) to upper/lower case.

Switches (whole screen) to upper case/graphics.

Moves down one line.

Moves up one line.

Moves one space to the right.

Moves one space to the left.

Moves to top left of screen.

Clears screen and moves to top left of screen.

Again, if you press the designated keys in the quote mode, these functions

occur when the string is printed. The reverse SHIFT N cannot be entered directly

into a string. You must type in the string leaving blanks where it is to go. Then,

when you are out of the quote mode, cursor back to those blanks, get into reverse

printing (Control 9) and type in the SHIFT N. You can also include the CHR$

code to perform the function when the string is printed.

The PRINT (or PRINT USING) statement may be used to place text on the

screen wherever the cursor is. When PRINT or PRINT USING is used, you can

control the position on the screen by placing the cursor where you want the text to

be. Generally, you must start by printing a CLEAR/HOME character

(CHR$(147)), so that the cursor always begins in the upper left corner of the

screen, and then using cursor control characters to reach the desired position.

The CHAR statement may also be used to place text on the screen. You may

still want to clear the screen using CLEAR/HOME, but you do not need to be

concerned with cursor positioning. The CHAR statement requires designating an

x-coordinate and y-coordinate for the placement of the text. The following

example program illustrates the use of some of these capabilities.

Text Mode Example Program

10 C0L0R0,S,5:C0L0R4,5,4:C0L0Rl,7,5

20 PRINTED [QQQQQQQQ"
30 PRINTSPC(14)//I]SrTR0DUCIMG//

40 PRINTSPC(14)"Y0UR "lC

50 C0L0Rl,16,l

Graphics Programming in BASIC 191

60 PRI1TTSPC(14)'/COMMODORE//

70 PRI1TTSPC(14)//COMPUTER//

90 F0RY=8T013

ioo char,i2,y," ininnnnni -
110 NEXT

120 CHAR,12,14,"

140 PRINTCHR$(144)SPC(15)"HIT KEY"

150 GETKEYK$:C0L0R0,2,7:C0L0R4,15,6

Notes

20 In quotes is a reversed heart followed by eight reversed upper case Q's. These

are printed with the SHIFT CLEAR/HOME and cursor-down keys,
respectively.

80 In quotes is a reversed upper-right-corner graphic (CHR$(127)) followed by

a reversed upper-case R and 15 spaces. These are obtained with CONTROL

CYAN, CONTROL REVERSE ON, and the space bar, respectively.

100 In quotes is a space followed by 13 reversed right square brackets, and one

more space. The reversed right square bracket is printed with the cursor-

right key.

130 In quotes are three reversed upper case Q's, which are printed with the
cursor-down key.

Line-by-Line Explanation

10 Change the background color to light purple, the border to darker purple,

and the character color to blue.

20 Clear the screen and cursor down near the middle.

30 Space over and print INTRODUCING.

40 On the next line space over and print YOUR and a flashing NEW.

50 Change the character color to green.

60 Space over and print COMMODORE.

70 On the next line space over and print COMPUTER.

80 On the eighth line in the thirteenth column, print a color change to cyan, and

15 reversed spaces.

90 Do the next statement for lines 9 through 14.

198 Programming Graphics

100 In the thirteenth column, print a reversed space, 13 cursor rights, and

another reversed space.

110 Do next line.

120 On the fifteenth line in the thirteenth column print 15 reversed spaces.

130 Print three cursor down commands.

140 Print a color change to black, space over, and print HIT KEY.

150 Wait for a key. Then change background and border colors to normal

values.

High-Resolution Mode

The graphics mode that provides maximum resolution on the Plus/4 is accessed

with the command:

GRAPHIC 1 filear flag

The clearflag is optional (1 clears the high-resolution screen, 0 or absence leaves

the screen intact).

This statement creates a bit-mapped screen on which the programmer can use

the Plus/4's graphics statements: BOX, CIRCLE, DRAW, and PAINT. A

section of memory (12K bytes) is set aside for this use and is therefore not

available for the BASIC program. The text screen area of memory is left intact.

Therefore, you can PRINT on the text screen behind the graphics screen, and the

PRINTed data are revealed when you return to text mode.

The Split-Screen You can create the bit map and view the upper portion of it

and the lower five lines of the text screen simultaneously with the command:

GRAPHIC 2,clearflag

Again, both the text and the bit-map areas of memory are reserved. The use of

this statement merely reveals the lower five lines of the text screen and conceals

the corresponding portion of the bit map. When the clear flag is set to 1, both the

graphics and text screens are cleared and the text cursor is placed at the left of the

first visible text line.

The Coordinate System The high-resolution screen is normally addressed with

a 320 by 200 coordinate matrix. The horizontal (or x) coordinate ranges from 0 at

Graphics Programming in BASIC 193

the left of the screen to 319 at the right. The vertical (or y) coordinate ranges from

0 at the top of the screen to 199 at the bottom. Only the CHAR statement (which

plots characters on the high-resolution screen) uses the text rows and columns for

its coordinates. The CHAR x and y are related to the high-resolution x and y by

CHAR coordinate = INT(high-resolution coordinate/'8)

Colors inHighResolution The background and border colors of the screen can

be changed as usual with the commands:

COLOR 0,color,luminance

and

COLOR 4,color,luminance

The other color available in high resolution is foreground. The foreground color

is set with

COLOR 1,color,luminance

In each of the drawing statements, you can specify the use of foreground or

background color.

Although you can choose to set (to foreground color) or clear (to background

color) each pixel on the screen in this mode, the colors of some pixels are not

independent. The background color is globally defined. Whenever you change

COLOR 0, every background colored pixel changes color. Also, each 8-pixel-by-

8-pixel character cell on the screen is assigned a single foreground color. This

means that every pixel set to foreground color within a character cell is the same

color. If you change foreground colors between two drawings to the same

character cell, the color of pixels drawn both times will be the color used last.

However, each of the 1000 character cells has an independent color (and lumi

nance), allowing for a great deal of creative color usage, even in high-resolution

mode.

Whenever you draw a pixel, whether in foreground or background color, the

foreground color for its character cell is set to the current foreground color. This

is normally the desired effect when you are drawing in foreground color. But

when drawing in background color, one would expect the foreground colors to be

unaffected. Unfortunately, this is not the case. If you have drawn in foreground

color in a character cell, and you return to draw in background color, the

foreground color of that cell is updated to your current foreground color. If you

194 Programming Graphics

have changed the foreground color since drawing in that cell, the foreground

colored pixels will change color, even though you are drawing in background

color.

High-Resolution Colors Example Program

This example program illustrates the color limitations of high-resolution

graphics mode. Note that the coordinates of the boxes in the first series are

incremented by 10. The character boundaries are therefore frequently crossed

and a "bleeding" of colors is observed. The coordinates of the boxes in the second

series are incremented by eight (and start on a character boundary). Therefore, no

character boundaries are crossed and the colors remain true.

10 GRAPHIC1,1

SO FORX=0TO190STEP10

30 COLOR1,((X/1O)AND15)+1,5

40 B0X,X,X,X+16,X+10,,l

50 NEXT

60 F0RX=0T0192STEP8

70 COLOR1,((X/8)AND15)+1,5

80 B0X,X+64,X,X+80,X+8,,l

90 NEXT

100 COLOR1AACHAR,5,20/'HITKEY''

110 GETKEYK$:GRAPHIC0

Line-by-Line Explanation

10 Enter high-resolution graphics mode (and clear graphics screen).

20 First series of box coordinates are incremented by 10.

30 Choose a new foreground color for each box.

40 Draw a box 16 by 10 at the current coordinates with foreground color

and fill it in.

50 Get the next set of coordinates.

60 Second series of box coordinates are incremented by 8.

70 Choose a new foreground color for each box.

80 Draw a box 16 by 8 at the current coordinates with foreground color and

fill it in.

90 Get the next set of coordinates.

100 Change foreground color to black and plot "HIT KEY".

110 Wait for a key, then return to text mode.

Graphics Programming in BASIC 195

Multicolor Graphic Mode

Multicolor graphic mode is normally used when the color restrictions of high

resolution are unacceptable. It is accessed with

GRAPHIC Z.clearflag

The clear flag is optional (1 clears the multicolor graphic screen, 0 or absence

leaves the screen intact).

This statement creates a multicolor bit-mapped screen on which the pro

grammer can draw graphics with the Plus/4's graphics statements: BOX, CIR

CLE, DRAW, and PAINT. A section of memory (12K bytes) is set aside for this

use and is therefore not available for the BASIC program. The text screen area of

memory is left intact. Therefore, you can PRINT on the text screen behind the

graphics screen, and the PRINTed data are revealed when you return to text

mode.

The Split-Screen You can create the multicolor bit map and view the upper

portion of it and the lower five lines of the text screen simultaneously with the

command:

GRAPHIC 4,ciear flag

Again, both the text and the multicolor bit map areas of memory are reserved.

The use of this statement merely reveals the lower five lines of the text screen and

conceals the corresponding portion of the multicolor bit map. When the clearflag

is set to 1, both the graphics and text screen are cleared and the text cursor is

placed at the left of the first visible text line.

The Coordinate System The multicolor graphic screen is normally addressed

by a 160 by 200 coordinate matrix. The horizontal (or x) coordinate ranges from 0

at the left of the screen to 159 at the right. The vertical (or y) coordinate ranges

from 0 at the top of the screen to 199 at the bottom. The x coordinates used on the

multicolor graphic screen are exactly one-half of the corresponding x coordinates

on the high-resolution screen. Only the CHAR statement (which plots characters

on the multicolor graphic screen) uses the text rows and columns for its coordi

nates. The CHAR x and y are related to the multicolor graphic x and y by

CHARy-ooordinate - INTimulticolor graphicy-coordinate/8*)

and

CHAR x-ooordinate = INT(inulticolor graphic x-coordinate/ty

196 Programming Graphics

By the way, characters plotted with CHAR in multicolor mode do not appear the

same as in text mode or high resolution because pairs of bits (not single bits) in the

character pattern determine the color.

Colors in Multicolor GraphicMode The background and border colors of the

screen can be changed as usual with the commands

COLOR 0,color,luminance

and

COLOR 4z,color,luminance

Three other colors are available in multicolor mode. They are all nonbackground

colors. The foreground color is set with

COLOR I,color,luminance

Multicolor 1 is set with

COLOR 2,color,luminance

Multicolor 2 is set with

COLOR 3,color,luminance

With each of the drawing statements, you can specify which color source to use.

Color management in multicolor graphics is somewhat involved. First, the

background and multicolor 2 are global colors. That is, whenever you change

COLOR 0, everything drawn in background color changes color. Similarly,

whenever you change COLOR 3, everything drawn in multicolor 2 changes color.

Second, each 8-pixel-by-8-pixel (or 4 by 8, using multicolor coordinates) charac

ter cell has its own set of colors and luminances for foreground color and

multicolor 1. This means that all the pixels within a character cell drawn in

foreground color are the same color. Also, all the pixels within a character cell

drawn in multicolor 1 are the same color. But the two colors can be different and

background and multicolor 2 can be used at the same time, allowing up to four

colors within a character cell. And each of the 1000 character cells has its own

independent pair of foreground color and multicolor 1.

Whenever you draw, the foreground color and multicolor 1 for the character

cell you are drawing in are updated to their current values. This means that if you

have changed either of these colors since drawing with them in this character cell,

the pixels you drew before will change color even if you are not now drawing with

their color source.

Graphics Programming in BASIC 197

Multicolor Example Program

This program draws three sets of circles, one in each of the three nonbackground

colors. The program demonstrates that these three colors are independent, but

drawing over a color replaces it. At the end, the foreground color is changed to

black to plot the characters in "HIT KEY". After the user hits a key, a line is

drawn in background color through the circles. Even though the line is drawn in

background color, the foreground color of the character cells through which it

passes is changed to black, spoiling the circles drawn in foreground colors.

10 GRAPHIC3,1

SO C0L0Rl,2,6:C0L0R2,5,5,:C0L0R3,13,4

30 F0RO3T01STEP-1

40 F0RA=0T0180STEP10

50 CIRCLEC,40+C*20,100a0,50,,,A,20

60 NEXTA,C

70 COLOR1AA-CHAR1,5,2O/'HITKEY''

80 GETKEYK$:DRAWO,0,100T0159,100

90 GETKEYK$:GRAPHIC0

Line-by-Line Explanation

10 Get into multicolor graphic mode.

20 Set up the foreground color, multicolor 1, and multicolor 2.

30 Draw in each of the three nonbackground colors.

40 Draw ovals at a series of angles.

50 Draw an oval.

60 Do the next angle and the next color.

70 Change the foreground color to black.

80 Wait for a key press. Then, draw a line in background color through the ovals.

90 Wait for a key press. Then, return to text mode.

The Pixel Cursor and Relative Coordinates

Each of the BASIC drawing statements needs at least one set of coordinates. If

you review those statements (BOX, CIRCLE, DRAW, PAINT, SSHAPE, and

GSHAPE) in the BASIC language section, you will notice that in many cases the

coordinates have a default value of the location of the pixel cursor. The pixel

cursor is an invisible set of coordinates that BASIC keeps track of at all times.

198 Programming Graphics

You can change the pixel cursor location with the LOCATE statement, and

BASIC may change the pixel cursor location when a drawing is done.

When you want to use the default value of the pixel cursor's coordinates in a

drawing statement, but need to specify one of the later parameters, only one

empty position must be left (NOT one for x and one fory). For example, the BOX

statement:

BOX color,xl,yl,x2,y3,angle,paint flag

defaults the second set of coordinates to the pixel cursor. If you want to do this,

but also want your box painted, the following can be used:

B0Xl,10,10,,45,l

This statement draws a filled-in box in foreground color between the absolute

coordinates (10,10) and the pixel cursor at an angle of 45 degrees.

The pixel cursor may be used as a reference for relative coordinates. That is,

you can specify coordinates relative to the pixel cursor's current coordinates. This

is useful when you want to be able to execute the same series of drawing steps at

various different locations on the screen.

Two types of relative coordinates are available. The first is rectangular relative

coordinates. Instead of specifying an absolute x and y coordinate, you specify

changes in x and y from the pixel cursor's current location. This is signaled by the

use of a plus (+) sign for a positive change or a minus (-) sign for a negative

change. For example, the statement

CIRCLE l,+10,-30,20

draws a circle of radius 20 with its center 10 pixels to the right and 30 pixels above

the pixel cursor's location.

The second type of relative coordinate is polar. Instead of specifying an

absolute x and y coordinate, you specify a distance and an angle from the pixel

cursor's current location. The distance is specified first, then separated from the

angle (in degrees) by a semicolon. For example, the statement

CIRCLE 1,15;45,S5

draws a circle of radius 25 with its center 15 pixels from the pixel cursor's location

at an angle of 45 degrees.

Relative Coordinates Example Program

10 GRAPHIC1,1

20 READX,Y,C,L:IFX<0THEW40

Graphics Programming in BASIC 199

30 G0SUB140:G0T020

40 COLOR1,1,0:CHAR,5,19//HIT KEY"

50 GETKEYK$:GEAPHICO:END

60 DATA100,100,4,5

70 DATA50,60,3,4

80 DATA10,20,5,6

90 DATA120,40,6,5

100 DATA140,70,7,5

110 DATA200,l 10,8,6

120 DATA240,50,9,6

130 DATA-1,-1,-1,-1

140 COLOR1,C,L

150 LOCATEX,Y

160 F0RA=0T0180STEP45

170 B0X,+30,+6,A
180 NEXT

190 PAHSTT,15;100

200 RETURN

Line-by-Line Explanation

10 Enter high-resolution mode and clear screen.

20 Read a set of coordinates, color, and luminance for a flower. If the

last flower is done, go to 40.

30 Call flower-drawing subroutine at 140 and return to 20 for next

flower.

40 Change the foreground color to black and plot "HIT KEY".

50 Wait for a key. Then return to text mode and stop the program.

60-130 Data for the flowers.

140 Change the foreground color for this flower.

150 Locate the pixel cursor at the x and y for this flower.

160 Draw boxes at angles from 0 to 180 degrees.

170 Draw a box with a corner 30 pixels below and 6 pixels to the right of

the pixel cursor location and the other corner at the pixel cursor.

180 Do the next angle.

190 Fill in the area in the middle of the flower.

200 Return from subroutine.

800 Programming Graphics

Custom Character Sets

The characters you see on your computer monitor or TV are formed by a pattern

of dots. Each character occupies a cell eight dots (pixels) wide and eight dots high.

Each dot is either on or off. Because each dot is individually controlled, the

graphics chip is said to be in high-resolution mode. The pattern ofdots that are on

form the character you see. The patterns for the built-in characters are stored in

your computer on a permanent memory chip (the character ROM).

Each dot in the character's pattern is represented by one bit in the character

ROM. Since there are 8 bits in one byte (or memory location), it takes 8 bytes to

specify each character's pattern. Following is a diagram illustrating the character

C's 8 x 8 cell.

Bit Values

128 64 32 16 8 4 2 1

« 0 ,

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

byteO

byte 1

byte 2

byte 3

byte 4

byte 5

byte 6

byte 7

The character C is represented by 8 bytes of data calculated by adding up the bit

values of the bits it has on. For example, byte 0 is 32 + 16 + 8 + 4 = 60 ($3C).

There are two sets of built-in characters. The first is upper case/graphics and

the second is upper/lower case. You can switch between the two by pressing the

SHIFT and IS keys simultaneously.

When the built-in characters are not sufficient, you can set up a custom

character set. That is, the graphics chip can be instructed to get its character

patterns not from the character ROM, but from an area of user memory (RAM).

A character set consists of 128 characters (8 bytes each) and resides in IK (1024

bytes) ofmemory. (See the machine language section of this chapter for informa

tion on expanding the character set to 256 characters.)

Two locations control where the character patterns come from: 65298 ($FF12),

which controls whether the patterns come from ROM or RAM, and 65299

($FF13), which controls what locations in memory the patterns come from.

When you switch between upper case/ graphics and upper/lower case with the

SHIFT and Q keys, you are changing the value of 65299, which controls where

the patterns come from. You can disable the £8 and SHIFT key combination by

POKEing the value 128 into the memory location 1351, or by PRINTing a

CHR$(8). To reenable this feature, POKE a 0 into 1351, or PRINT a CHR$(9).

Graphics Programming in BASIC

Copying the Standard Set If you want to add your own special characters to

the built-in characters and still use some of the standard characters, you need to

copy the patterns stored in the character ROM to an area of user memory. This

situation is somewhat complicated in BASIC. The PEEK function automatically

reads RAM. This means that if you PEEK the area of memory containing the

character ROM, you do not get the ROM patterns at all, but the contents of the

RAM "underneath" the ROM. (See the banking section in Chapter 5.) You can

defeat the BASIC switch to RAM with the following POKE:

POKE 1177,62

You can then copy the upper case/graphic ROM patterns to your RAM area (at
characters) with

FOR I = 0 TO 1023:P0KE c2iaracters+I,PEEK(53248+I):NEXT I

or copy the upper/lower case ROM patterns with

FOR I = 0 TO 1023:P0KE ciiaracters+I,PEEK(54272+I):]SrEXT I

You must then restore BASIC'S subroutine with

POKE 1177, 63

Because using this method actually changes the operation of BASIC while its

subroutine is altered, restore the switch to RAM before you perform any other

operations.

High-Resolution Characters You can create custom character patterns in

RAM and use them instead of the ROM characters in your program. First, you

need to define your new characters. For each custom character use an 8 * 8 grid

similar to the one shown in the beginning of this section. The top row of the grid

represents the top row of your character. Add up the bit values for the dots you

want on in this row. This sum is the first of eight data values for your character.

Do the same for each of the remaining rows.

Since your custom characters must appear in RAM, you must switch the

graphics chip to look at RAM. This is accomplished by clearing bit 2 of 65298

($FF12), that is, ANDing its current value with 251.

P0KE65298,PEEK(65298)AND251

To reselect ROM, you must set this bit, that is, OR its current value with 4.

P0KE65298,PEEK(65298)0R4

202 Programming Graphics

You need to decide where in RAM your characters will be stored. They must be

stored in an area ofRAM not otherwise used by your program. (See Chapter 5 on

moving BASIC and where BASIC programs reside.) Also, the graphics chip

always considers a 1K (1024-byte) section of memory (room for 128 characters) to

be its current character set. Therefore, your custom character set must begin on a

IK boundary. The boundary used is controlled by the upper 6 bits of 65299

($FF13). To specify the location of your character set, you can use the following

BASIC line:

P0KE65299,(PEEK(65S99)AlTO3)0Rx

where the value of x is determined from Table 4-2.

Table 4-2. Custom Character Set Locations

Hex

$00

$04

$08

$0C

$10

$14

$18

$1C

$20

$24

$28

$2C

$30

$34

$38

$3C

$40

$44

$48

$4C

$50

$54

$58

$5C

X

Dec

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

Characters

Hex

$0000

$0400

$0800

$0C00

$1000

$1400

$1800

$lC00

$2000

$2400

$2800

$2C00

$3000

$3400

$3800

$3C00

$4000

$4400

$4800

$4C00

$5000

$5400

$5800

$5C00

Decimal

0

1024

2048

3072

4096

5120

6144

7168

8192

9216

10240

11264

12288

13312

14336

15360

16384

17408

18432

19456

20480

21504

22528

23552

Hex

$60

$64

$68

$6C

$70

$74

$78

$7C

$80

$84

$88

$8C

$90

$94

$98

$9C

$A0

$A4

$A8

$AC

$B0

$B4

$B8

$BC

X

Dec

96

100

104

108

112

116

120

124

128

130

134

138

142

146

150

154

160

164

168

172

176

180

184

188

Characters

Hex

$6000

$6400

$6800

$6C00

$7000

$7400

$7800

$7C00

$8000

$8400

$8800

$8C00

$9000

$9400

$9800

$9C00

$A000

$A400

$A800

$AC00

$B000

$B400

$B800

$BC00

Decimal

24576

25600

26624

27648

28672

29696

30720

31744

32768

33792

34816

35840

36864

37888

38912

39936

40960

41984

43008

44032

45056

46080

47104

48128

Hex

$C0

$C4

$C8

$cc

$D0

$D4

$D8

$DC

$E0

$E4

$E8

$EC

$F0

$F4

$F8

$FC

X

Dec

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

Characters

Hex

$C000

$C400

$C800

$CC00

$D000

$D400

$D800

$DC00

$E000

$E400

$E800

$EC00

$F000

$F400

$F800

$FC00

Decimal

49152

50176

51200

52224

53248

54272

55296

56320

57344

58368

59392

60416

61440

62464

63488

64512

Graphics Programming in BASIC 80S

The value in the table for the character base address (characters) tells you

where to copy the ROM patterns to if you want to use some of the standard

characters. If you want to know where a specific character's patterns begin, take

its screen code (see Appendix E), multiplied by 8, and add it to the character base

address. To copy the pattern ofa specific character in the character ROM, use the

following:

FOR 1=0 TO 7

POKE oharaoters+new code*8+I,PEEK(ii0M+oid code*8+I)
1TEXTI

where characters is the new character set base address, new code is the new screen

code for the character, ROM is the old- base address (53248 for an upper

case/graphic character, or 54272 for an upper/lower case character), and old

code is the original screen code for the character.

High-Resolution Custom Characters Example Program

In this example, type the small letters inside the quotes without shifting, and type

the capital letters inside the quotes shifted.

10 POKE1177,62

SO FORI=0TO1023

30 P0KE8192+I,PEEK(54272+I)

40 1TEXT

50 P0KE1177,63

60 P0KE65299,(PEEK(65299)AND3)0R32

70 P0KE65298,PEEK(65298)A]H)251

80 P0KE1351.128

90 F0RI=0T07:READA:P0KE8192+IrA.:NEXT

100 PRIHT'The Temperature is 25@C"

110 PRINT"Hit a key to restore standard characters"

120 GETKEYAl

130 P0KE65299,(PEEK(65299)AlirD3)0R208

140 P0KE65298,PEEK(65298)0R4

150 P0KE1351.0

160 END

170 DATA24,36,36,24,0,0,0,0

Line-by-Line Explanation

10 The BASIC function PEEK is altered to look at ROM.

204 Programming Graphics

20 The entire 128 character set is copied (8*128 = 1024).

30 The upper/lower case characters are copied from ROM to RAM at 8192

($2000).

40 Get the next byte.

50 The BASIC function PEEK is restored to normal operation.

60 The graphic chip character base address is set to 8192 ($2000).

70 The graphic chip reads character patterns from RAM.

80 The S§ and SHIFT key combination does not switch the charaacter set

base address.

90 A new custom character is inserted into the first character (@) position.

100 A message including the new character is printed to the screen.

110 A prompt instructs the user of the program.

120 The program waits for keyboard input.

130 The graphic chip character base address is restored to 53248 ($D000).

140 The graphic chip reads character patterns from the character ROM.

150 The CS and SHIFT key combination is reenabled.

160 Program execution ends.

170 The data for the custom character (a degree symbol).

Multicolor Characters One of the major reasons for creating a custom charac

ter set is to use more than a single foreground color and the background color in a

character cell. In multicolor text mode, a pair of bits determine which of four

colors a pair of pixels will be. The character pattern is organized in a parallel

fashion with a high-resolution character, except that 2 bits together determine the

color of the corresponding pair of pixels on the screen. Each byte in the character

pattern determines the appearance of 8 pixels on the screen. The first 2 bits are the

first 2 pixels, the second 2 the next 2, and so on.

The bit patterns are assigned as follows:

Bit Pair Color Source

00 background 0 (65301)

01 background 1(65302)

10 background 2 (65303)

11 foreground

Graphics Programming in BASIC 205

As you can see, the first three bit patterns use global color sources. This means

you have three global (whole screen) colors. The last bit pattern uses the normal

color memory to get its color (and luminance), so that each character can have an

independent foreground color.

Using the bits in pairs this way limits the resolution of your character in the

horizontal direction. Sometimes this is too restrictive. The Plus/4 allows you to

mix high-resolution and multicolor characters on the same screen. The Plus/4

must be in multicolor mode. This is accomplished with

POKE 65287,PEEK(65287)0R16

To put the chip back in high-resolution mode use

POKE 65287,PEEK(65287)AIfiD239

When the Plus/ 4 is in multicolor mode, the color (not luminance) chosen for a

given character cell determines whether the character occupying it is high resolu

tion or multicolor. If the color associated with a given cell is greater than 8

(yellow), then the cell is multicolor. The actual foreground color of the cell is not

the color chosen (color) but the color given by

color-8

If the color associated with the cell is less than or equal to 8, then the cell is high

resolution and its actual color is the color chosen. This means that, when using

multicolor text mode, only the first eight colors are available for use as fore

ground colors. However, all eight luminances are available for each of these

colors.

The background registers 65301-65303 used for coloring the nonforeground

pixel pairs can be assigned any of the 16 colors and 8 luminances. To calculate the

value needed, use

luminance*16+color-1

where the luminance is 0 through 7 and the color is chosen from the available

colors (1-16).

Note: In multicolor mode, the cursor is invisible. It is a good idea to return to

high-resolution character mode when exiting a program.

Multicolor Custom Characters Example Program

In this example, type the small letters inside the quotes without shifting, and type

the capital letters inside the quotes shifted.

206 Programming Graphics

10 POKE1177,62

20 FORI=0TO1023

30 POKE8192+I,PEEK(54272+1)

40 NEXT

50 POKE1177,63

60 POKE65299r(PEEK(65299)AND3)OR32

70 POKE65298,PEEK(65298)AND251

80 POKE65287,PEEK(65287)OR16

90 POKE1351,128

100 POKE65301,65

110 POKE65302,0:POKE65303,93

120 PORI=0TO15:READA:POKE8512+I,A:NEXT

130 PRINTCHR$(154)"Butterflies Fly Free"

140 PRINTSPC(10)"()"SPC(10)CHR$(153)"()"

150 PRINTCHR$(144)"Hit a key to restore standard characters"

160 GETKEYA$

170 POKE65299,(PEEK(65299)AND3)OR208

180 POKE65298,PEEK(65298)0R4

190 POKE65287,PEEK(65287)AND239

200 POKE1351,0

210 END

220 DATA196,241,237,237,253,253,241,193

230 DATA76,60,236,236,252,252,60,12

Line-by-Line Explanation

10 Disable the switch to RAM of the subroutine called by PEEK.

20 Start loop to copy entire IK character set.

30 Move upper/lower case character set to RAM, starting at location

8192.

40 Go back for the next byte.

50 Restore the subroutine called by PEEK.

60 Change the character base address of graphics chip to 8192.

70 Make graphics chip get the character patterns from RAM.

80 Put the graphics chip into multicolor mode.

90 Disable 8S SHIFT keys.

100 Set screen background color 0 to white with luminance 4 (gray).

4*16+8-1=65

110 Set background color 1 to black.

0*16+1-1=0

And, set background color 2 to light blue with luminance 5.

5*16+14-1=93

Graphics Programming in BASIC 807

120 Read the multicolor characters in the DATA statements, and replace

the parentheses characters (screen codes 40 and 41) with them.

8192+40*8=8512

130 PRINT a CHR$(154) to be in multicolor with foreground color blue,

followed by the sentence. When you run this program, note the

appearance of the standard characters PRINTed in multicolor. This

is because the bits are being interpreted as multicolor pairs.

140 PRINT a multicolor blue butterfly. Then change to multicolor green

(CHR$(153)) and PRINT a green butterfly. Note that in both butter

flies the spot is light blue and the body is black. These areas use the

shared background color registers for their color information.

150 PRINT a CHR$(144) for high resolution with foreground color

black, followed by the message. Note that the characters now look

normal because their bits are being interpreted one at a time as high-

resolution on or off messages.

160 Wait for a key.

170 Restore graphics chip looking at the location of the character ROM.

180 Restore graphics chip looking at ROM.

190 Get out of multicolor mode.

200 Restore £§ SHIFT keys.

210 End of execution.

220-230 Data for the two halves of the butterfly.

ExtendedColorMode In this mode each dot is individually controlled, as they

are in high-resolution characters; the difference is that you can specify any of four

background colors (of the bits that are 0) for each character. You can also still

choose an individual foreground color (of the bits which are 1) for each character

cell. In extended color mode, the number of characters available is cut to 64

(representing settings for 6 bits). The setting of the two high bits in the screen code

for a character determines which background color it will use.

Screen Code Character Pattern Background Color Register

0

64

128

192

- 63

-127

-191

-255

0-63

0-63

0-63

0-63

65301

65302

65303

65304

208 Programming Graphics

The background color registers are all global color sources. This means you have

four global (whole screen) colors. The foreground bits use the normal color

memory to get their color (and luminance), so each character can have an

independent foreground color.

To enter extended color mode, use

POKE 65286,PEEK(65286)0R64

To put the chip back in high-resolution mode, use

POKE 65286,PEEK(65S86)AUD191

The background registers 65301-65304, which are used for coloring the back

ground pixels, can be assigned any of the 16 colors and 8 luminances. To calculate

the value needed, use

luminance* 16+color-1

where the luminance is 0 through 7, and the color is chosen from the available

colors (1-16). The color assigned to background registers 63501 and 63502 can

also be controlled by the COLOR command for sources 0 and 3, respectively. The

remaining two color registers cannot be changed with the COLOR command.

Note: In extended background color mode, the cursor is invisible. It is a good

idea to return to high-resolution character mode when exiting a program.

Example: 10 SCNCLR

20 POKE65286, PEEK (65286)OR64

30 FORI=1TO4

40 PRINT"COLOR, LUMINANCE FOR";I;:INPUTC,L

50 POKE65300+I,L*16+C-1:NEXT

60 FORI=0TO63

70 POKE3072+I,I

80 POKE3136+I,I+64

90 POKE3200+I,1+128

100 POKE3264+I,1+192

110 NEXT

120 1=0

130 PORC=0TO15:FORL=0TO7

140 POKE2048+IrL*16+C

150 POKE2176+I,L*16+C

160 1=1+1

170 NEXTL,C
180 PRINT"HIT KEY":GETKEYK$:POKE65286rPEEK(65286)ANDl91

190 COLOR0,2,7

Graphics Programming in BASIC 809

Line-by-Line Explanation

10 Clear the screen.

20 Turn on extended color mode.

30 For each background color register:

40 Get a color and luminance.

50 Put the selection into the register and continue.

60 For each possible character:

70 Put up a set with background color 1.

80 Put up a set with background color 2.

90 Put up a set with background color 3.

100 Put up a set with background color 4.

110 Next character.

120 I points to a spot in color memory.

130 For each color and luminance:

140 Put color and luminance into color memory.

150 Put color and luminance into color memory.

160 Increment pointer.

170 Next luminance and color.

180 Wait for a key press, then turn off the extended color mode.

190 Return the background color to white.

Smooth Scrolling

When the last line of the Plus/4 screen is filled with text, the screen is automati

cally scrolled. That is, the top line is discarded, the rest of the lines are moved up

one line, and the last line is cleared. Thus, the text moves up a whole line at a time.

In some applications it is desirable to scroll the text (or bit map) smoothly, that is,

one pixel at a time, either vertically or horizontally.

Vertical scrolling is handled by memory location 65286 ($FF06). Normally, the

first step is to shrink the screen to 24 lines. The effect of this is to expand the

border to cover one character line. The information to be added at the top or

210 Programming Graphics

bottom of the screen can then be placed invisibly on the line and scrolled onto the

screen. To shrink the screen, bit 3 of the scroll register must be cleared with

POKE 65286,PEEK(65286)A1TD247

To restore the screen later, use

POKE 65286,PEEK(65286)0R8

The low three bits of the scroll register determine the scrolling position; normally

it is 3. To set the scrolling position, use

POKE 65286,(PEEK(65286)AKTD248)ORscroJiin^position

When the scrolling position is set to 7, the bottom line is completely invisible and

the top line is completely visible. Then, as the scrolling position is decreased to 0,

more and more of the bottom line is revealed, and the top line is concealed. When

the scrolling position is 0, all but the bottom pixel of the bottom line is visible, and

all but the bottom pixel of the top line is invisible.

If the existing lines are each moved up one, and a new line is placed at the

bottom while the scrolling position is simultaneously reset to 7, a smooth upward

scroll is achieved. To accomplish this, the operation should be done in machine

language and timed with the raster beam (see Chapter 5). But upward scrolling

can be done fairly well in BASIC. The example program shows an upward scroll.

Downward scrolling is accomplished by reversing the operations.

Horizontal scrolling is handled by memory location 65287 ($FF07). The first

step is normally to shrink the screen to 38 columns. The effect of this is to expand

the border to cover two character columns. Then, the information to be added at

the left or right of the screen can be placed invisibly on the line and scrolled onto

the screen. To shrink the screen, bit 3 of the scroll register must be cleared with

POKE 65287,PEEK(65287)A1TO247

To restore the screen later, use

POKE 65287,PEEK(65287)0R8

The low three bits of the scroll register determine the scrolling position; normally

it is 0. To set the scrolling position, use

POKE 65287,(PEEK(65287)A]SrD248)0RsicroJJ2ii^position

When the scrolling position is set to 0, both the left and right columns are

completely invisible. Then, as the scrolling position is increased to 7, more and

Graphics Programming in BASIC 211

more of the left column is revealed, and the second column from the right is

concealed. When the scrolling position is 7, all but the left pixel of the left column

is visible, and all but the right pixel of the second column from the right is

invisible.

If the information in each column is moved right, and a new column is added

on the left while the scrolling position is simultaneously cleared to 0, a smooth

right scroll is obtained. This is best done in machine code. A left scroll is obtained

by reversing the procedure.

Smooth Scrolling Example Program

10 SOTCLR:FORI=0TO24:GOSUB120:NEXT

20 SR=65286

30 FORT=1TO2O:NEXT

40 P0KESR,(PEEK(SR)AND240)0R7

50 G0SUB120

60 F0RI=6T00STEP-l

70 P0RT=lT060:]SrEXT

80 POKESR,(PEEK(SR)A1TD24O)ORI

90 1OJXT

100 GETK$:IFK$=""THEITG0T030

110 P0KESR,(PEEK(SR)A]SrD240)0Rll:E]SrD

120 PRI1TTCHR$(13) "HIT A KEY TO STOP SCROLLING";:RETURN

Line-by-Line Explanation

10 Clear the screen and fill it with the message.

20 Set SR to scroll register address.

30 Wait loop.

40 Set to 24 lines and set the scroll register value to 7.

50 Put the message on the hidden line.

60 Count down for scroll register value.

70 Wait loop.

80 Set scroll register value.

90 Go back for next value.

100 See if a key has been pressed. If not, return to line 30.

110 Set to 25 lines and the default scroll register value (3).

120 Subroutine to print carriage return followed by message.

212 Programming Graphics

Animation

Computer animation consists of rapidly displaying a series of graphics, each

changed somewhat from the previous one, to create the illusion of motion. There

are a number of methods for doing this. The more advanced can be accomplished

only through direct control of the graphics chip. Also, to attain the speeds

required to fool the human eye, machine language programming is usually

necessary.

Only a couple examples of straightforward methods using BASIC are pre

sented here. To get more involved with animation, study the concepts of directly

controlling the chip from machine language in the next section and experiment

with them.

Animation Using Characters Character animation can be extremely convinc

ing, even in BASIC. The pattern on the screen is defined by only 1 byte (a screen

code placed in the proper character cell), or possibly 2, when color changes are

occurring. So the pattern can be changed just by changing the value of that screen

code. This can be done very quickly.

For serious animation, direct access to the screen and color memories (with

POKE statements) is usually used. For information on these memories, see the

summary of memory maps later in this chapter. This example uses the CHAR

statement to place multicolor characters on the screen.

The animation consists of three positions (frames) of the two-character-wide

multicolor butterfly presented earlier. The first (frame 1) shows its wings wide

open. The second (frame 2) shows them partially closed. The last (frame 3) shows

them totally closed. To animate the butterfly, the frames must be shown in the

sequence 1,2,3,2,1,2,3,2,1, For the butterfly to appear to move, each

successive frame must be shown in a different (adjacent) pair of character cells

from the previous frame. So, we must erase the previous frame in addition to

showing the next frame.

Character Animation Example Program

In this example, type the small letters inside the quotes without shifting, and type

the capital letters inside the quotes shifted.

10 POKE1177,62

20 FORI=0TO727

30 POKE8192+1,PEEK(54272+1)

40 NEXT

50 POKE1177,63

60 POKE65299,(PEEK(65299)AND3)OR32

70 POKE65298,PEEK(65298)AND251

80 POKE65287,PEEK(65287)OR16

Graphics Programming in BASIC 213

90 POKE1351,128

100 POKE65301,65

110 POKE65302,0:POKE65303,93

120 PORI=0TO47:READA:POKE8512+IfA:NEXT

130 PRINTCHR$(147)CHR$(154)11 Butterflies Fly Free"

140 PRINTCHR$(13);CHR$(144)" Hit key for standard characters"

150 Y=24:Y1=24

160 GETK$:IFK$O""THENPRINTCHR$(144) :QOTO220

170 A$="()":GOSUB270

180 A$=lf*+":GOSUB270

190 A$=",-II:GOSUB270

200 A$="*+":GOSUB270

210 GOTO160

220 POKE65299,(PEEK(65299)AND3)OR208

230 POKE65298,PEEK(65298)OR4

240 POKE65287,PEEK(65287)AND239

250 POKE1351,0

260 END

270 CHAR1,12,Y1," "

280 CHAR1,12,Y,CHR$(154)+A$

290 CHARl,22,Yl,M "

300 CHAR1,22,Y,CHR$(153)+A$

310 Yl=Y:Y=Y-l:IFY<0THENY=24

320 RETURN

330 DATA196,241,237,237,253,253,241,193

340 DATA76,60,236,236,252,252,60,12

350 DATA52,49,57,61,61,49,49,49

360 DATA112,48,176,240,240,48,48,48

370 DATA4,3,3,3,3,3,3,3

380 DATA64,0,0,0,0,0,0,0

Notes

130 There is a space between the opening quotation mark and the shifted B.

There are two spaces between the words Butterflies and Fly.

140 There is a space between the opening quotation mark and the shifted H.

There are two spaces between the wordsfor and standard, and between

the words standard and characters.

270 There are two spaces between the pair of quotation marks.

290 There are two spaces between the pair of quotation marks.

Line-by-Line Explanation

10 Disable switch to RAM of subroutine called by PEEK.

20 Start loop to copy first 90 characters.

30 Move upper/lower case characters to RAM starting at location 8192.

214 Programming Graphics

40 Go back for next byte.

50 Restore subroutine called by PEEK.

60 Change character base address of graphics chip to 8192.

70 Make graphics chip get character patterns from RAM.

80 Put graphics chip into multicolor mode.

90 Disable £8 SHIFT keys.

100 Set screen background color 0 to white with luminance 4 (gray).

4*16+2-1=65

110 Set background color 1 to black.

0*16+1-1=0

And set background color 2 to light blue with luminance 5.

5*16+14-1=93

120 Read the multicolor characters in the DATA statements, and replace

the characters with screen codes 40 through 45.

8192+40*8=8518

130 PRINT a CHR$(154) to be in multicolor with foreground color blue,

followed by the sentence.

140 PRINT a carriage return (CHR$(13)), a CHR$(144) to be in high

resolution with foreground color black, and the message.

150 Start the butterflies at the bottom of the screen.

160 Look to see if a key was hit. If so, change the foreground color to

black, and go on to finish the program at line 220.

170 Set up for frame 1 and call output subroutine at 270.

180 Set up for frame 2 and call output subroutine.

190 Set up for frame 3 and call output subroutine.

200 Set up for frame 2 and call output subroutine.

210 Return to line 160 to go again.

220 Restore graphics chip looking at the location of the character ROM.

230 Restore graphics chip looking at ROM.

240 Get out of multicolor mode.

Graphics Programming in BASIC 215

250 Restore K§ SHIFT keys.

260 End of program execution.

270 Put two space characters in the position of the previous frame for the

rightmost butterfly (saved in Yl).

280 Set color to multicolor blue and put up the current frame for the

rightmost butterfly.

290 Put two space characters in the position of the previous frame for the

leftmost butterfly.

300 Set color to multicolor green and put up the current frame for the

leftmost butterfly.

310 Save the current position in Yl. Change Y to plot the butterflies one

character line higher on the next frame. But if they fly off the screen,

restart them at the bottom.

320 End of subroutine.

330-380 Data for the three frames of the butterfly.

Animation in Multicolor Graphics When using a bit-mapped screen for ani

mation, you can actually have the moving objects appear to move in front of a

stationary background. Usually this is done in machine language because consid

erable speed is required to avoid flicker. But, an example program can be done in

BASIC using the SSHAPE and GSHAPE statements.

The example uses two frames of a pogo stick jumper. First, the background

information that will be under thejumper is saved (SSHAPE). Then, he is plotted

to the screen (GSHAPE). To prepare for the next frame, thejumper is erased (by

replacing the background saved before), and the process starts again.

The SSHAPE statement allows you to save a portion of the screen in a string

variable. Because a single string can be at most 255 bytes long, only a limited

amount of the screen can be saved at one time. If you try to save too large a

portion, a STRING TOO LONG ERROR results. SSHAPE saves only the

pattern of bits in the area, not the color information.

The GSHAPE statement places such a string anywhere on the screen. The

colors used are the current colors. If they have changed since the shape was saved,

the new ones are used. The last parameter of GSHAPE lets you decide how the

shape is to be placed on the screen:

0 = shape replaces background

1 = the inverted shape replaces background

216 Programming Graphics

2 = the shape is ORed with the background

3 = the shape is ANDed with the background

4 = the shape is XORed with the background

The effect of this parameter depends on the actual bit patterns used in the shape

and on the background. In multicolor mode, the bit patterns are determined by

which color sources (0-3) are used to draw the shape. Tables 4-3 through 4-7

show the results of using each parameter value.

Table 4-3. Resulting Color Source Using a Parameter Value of 0

Color Source

Used in Shape

0

1

2

3

Table 4-4. Resulting

Color Source

Used in Shape

0

1

2

3

Table 4-5. Resulting

Color Source

Used in Shape

0

1

2

3

Color

0

0

1

2

3

Color:

Color

0

3

2

1

0

Color

Color

0

0

1

2

3

Source

1

0

1

2

3

Source

Source

1

3

2

1

0

Source

Source

1

1

1

3

3

Used on

2

0

1

2

3

Screen

3

0

1

2

3

Using a Parameter Value of 1

Used on

2

3

2

1

0

Screen

3

3

2

1

0

Using a Parameter Value of 2

• Used on

2

2

3

2

3

Screen

3

3

3

3

3

Graphics Programming in BASIC 217

Table 4-6. Resulting Color Source Using a Parameter Value of 3

Color Source Used on Screen
Color Source

Used in Shape

0

1

2

3

0

0

0

0

0

/

0

1

0

1

2

0

0

2

2

3

0

1

2

3

Table 4-7. Resulting Color Source Using a Parameter Value of 4

Color Source Used on Screen
Color Source

Used in Shape

0

1

2

3

0

0

1

2

3

1

1

0

3

2

2

2

3

0

1

3

3

2

1

0

The example program places a shape drawn with color source 2 on a back

ground screen drawn with color source 1. Both the shape and the background

screen also use background color (source 0). Using a parameter value of 2, the

background "shows through" the shape wherever it uses color source 0. Where it

uses color source 2, the resulting color source is 2 (where the background color

source is 0) or 3 (where the background color source is 1). To keep the colors the

same, color sources 2 and 3 must be set to the same color.

Multicolor Graphics Animation Example Program

10 GRAPHIC3,1

20 COLOR2,5,5:COLOR3,5,5

30 DRAW2,50,50TO50,73

40 CIRCLE2,46,45f2:PAINT2,46,45

50 DRAW2,46,50TO46,55TO50,53

60 DRAW2f46,55TO46,58TO50f70

70 SSHAPEA$(0),44,41,50,73

80 DRAW2,70,50TO70,75

90 CIRCLE2,68,40,2:PAINT2,68,40

100 DRAW2,68,44TO68,49TO70,53

110 DRAW2,68,49TO68,52TO70,70

120 SSHAPEA$(1),66,36,70,75

130 SCNCLR

140 DRAW1,0,95TO159,95

150 DRAW1,0,115TO159,115

818 Programming Graphics

160 FORI=1TO6:READX,Y,W

170 BOX1,X,Y,X+W,94,,1

180 NEXT

190 SSHAPEB$,6,61,10,100:X1=0

200 FORX=0TO154STEP12

210 GSHAPEB$,X1+6,61

220 SSHAPEB$,X,78,X+6,110

230 GSHAPEA$(0),X,78,2

235 FORT=1TO20:NEXT

240 GSHAPEB$,X,78

250 SSHAPEB$,X+6,61,X+10,100

260 GSHAPEA$(1),X+6,61,2

265 PORT=1TO20:NEXT

270 X1=X

280 NEXTX

290 GSHAPEB$,X1+6,61

300 CHAR1,5,20,"HIT KEY11

310 GETKEYK$:GRAPHIC0

320 DATA10,20,30,50,40,10

330 DATA65,20,15,85,20,10

340 DATA105,30,15,140,50,20

Line-by-Line Explanation

10 Enter multicolor graphic mode and clear the screen.

20 Set color sources 2 and 3 to purple.

30 Draw the first pogo stick.

40 Draw the first jumper's head.

50 Draw the first jumper's neck and arms.

60 Complete the first jumper.

70 Save the first frame in A$(0).

80 Draw the second pogo stick.

90 Draw the second jumper's head.

100 Draw the second jumper's neck and arms.

110 Complete the second jumper.

120 Save the second frame in A$(l).

130 Clear the screen to prepare for animation.

140 Draw the first side of the street.

150 Draw the second side of the street.

160 For six buildings, read their coordinates and width.

Graphics Programming in Machine Language 210

170 Draw a building.

180 Go back for the next building.

190 Save information under first frame.

200 Do the following for ^-coordinates, stepping across the screen by 12.

210 Replace background over the previous frame.

220 Save background under this frame.

230 Get the first frame ofjumper.

235 Wait briefly. This is optional. The longer you wait, the slower the
jumper goes, but the smoother the movement seems.

240 Replace background over the previous frame.

250 Save background under this frame.

260 Get the second frame ofjumper.

265 Wait briefly as in line 235.

270 Save the coordinate for the next time through.

280 Go back for the next x value.

290 Erase the final frame of the jumper.

300 Write "HIT KEY".

310 Wait for a key. Then return to text mode.

320-340 The coordinates and widths for the six buildings.

Graphics Programming in Machine Language

A great destf of the graphics capacity of your Plus/4 is available from BASIC.

However, there is frequently no substitute for being able to control the graphics

chip directly, especially because it does have capabilities that are not utilized in

the built-in BASIC graphics statements.

The graphics chip operates in one of two modes, either character mode or

bit-map mode. The split screen available from BASIC is not a hardware feature;

it is part of the BASIC language software supplied on ROM inside your

computer.

When operating in character mode, you can choose high-resolution characters,

multicolor characters, or extended color mode. When operating a bit-map mode,

you can choose high resolution (320 by 200) or multicolor (160 by 200). Each of

these possibilities is explored in this section.

ZZO Programming Graphics

Characters

In addition to being used for most applications involving text, characters are

frequently the most efficient means of displaying many other types of graphic

information on the screen. The character set can be expanded to include 256

completely different characters. The entire screen is controlled through the use of

only 1000 memory locations for screen codes (and 1000 for color information).

This makes access to the screen extremely fast.

Locating a CharacterSet inMemory The standard built-in upper case/ graphics

character set is located in ROM at $D000. The upper/ lower case set is located in

ROM at $D400. If you are using a custom character set, it is usually located in

RAM. To tell the graphics chip to look at RAM, you must clear bit 2 of $FF12.

The character set is located by setting the high 6 bits of $FF 13 to the high 6 bits of

the character set location. Care should be taken to preserve the 2 low bits of

$FF13 because they are used for other purposes.

Normally, a character set consists of 128 eight-byte patterns (IK). Hence a

character set location must be on a IK boundary. Any screen code greater than

127 will produce a reversed screen image in high-resolution mode. To expand the

character set to 256 separate patterns, turn off the hardware reverse by setting bit

7 of $FF07 to 1. When this is done, your character set must be located on a 2K

boundary.

Locating Screen and Color Memory A character is placed on the screen by

placing its screen code into a location of screen memory. The screen code

(multiplied by 8) is used by the graphics chip to look up the character's pattern in

the character set. The color and luminance associated with a particular screen

location are stored in the corresponding location in color memory.

These two sections of memory are each IK (1000 locations for the 25 rows of40

columns and 24 unused locations). They are treated as a single 2K block. Color

memory is located by setting the high 5 bits of $FF14 to the high 5 bits of the

desired color memory location. Screen memory is always located in the IK

immediately following color memory. Color memory must be located on a 2K

boundary. Normally, color memory is located at $0800 (2048) and screen memory

at S0C00 (3072).

High-Resolution Characters In high-resolution character mode, each dot in an

8><8 character cell is controlled by a single bit in the character definition. The

screen code stored in screen memory (multiplied by 8 and added to the character

set base address) points at the character definition. The character definition

consists of 8 bytes. The first byte corresponds to the top row of the character and

Graphics Programming in Machine Language ZZ1

the last to the bottom row. The high bit of each byte corresponds to the leftmost

dot in the character cell and the low bit to the rightmost dot. When a bit is off, the

color of the corresponding dot comes from the background color register $FF15.

When a bit is on, the color of its dot comes from the byte of color memory

associated with the character cell. Therefore, each character cell on the screen has

its own independent color and a common background color.

Normally, if the screen code in screen memory is greater than 127, the chip

subtracts 128 to determine where the character's pattern is stored. But, when the

chip retrieves the pattern, it reverses the roles of on and off bits. Thus, only 128

patterns need to be stored to obtain 256 characters. The second 128 characters are

exactly the reversed image of the first 128. If you do not need this reversing and

would like to have 256 different characters, set bit 7 of $FF07 to 1, as described in

a previous section.

The color memory controls three functions. When bit 7 is set, the character is

flashed. The next three bits determine the luminance of the color chosen with the

low 4 bits.

Extended Color Mode Extended color mode is chosen by setting bit 6 of

$FF06 to 1. This is a high-resolution mode in the sense that each dot is individu

ally controlled by the character pattern. The character set is only 64 characters,

which must be located on a 2K boundary. The hardware reverse bit in $FF07 is

ignored, and flashing is disabled. The dots in the character with corresponding

bits on get their color from color memoryjust as they do in high-resolution mode.

However, the background color for each character cell is determined indepen

dently by the screen code used.

Background Color RegisterScreen Code

$00-$3F

$40-$7F

S80-SBF

$C0-$FF

Character Pattern

$00-$3F

$00-$3F

$00-$3F

$00-$3F

Backgi

$FF15

$FF16

SFF17

SFF18

Therefore, each character cell has its own independent foreground color and the

choice of one of four different background colors.

Multicolor Characters Choose multicolor mode by setting bit 4 of $FF07. The

resolution of characters in multicolor is half that of high resolution in the

horizontal direction. This is because, rather than each bit controlling the color of

a single dot, each pair of bits controls the color of a pair of dots.

Bit Maps

ZZZ Programming Graphics

Bit Pair Color Source

00 $FF15

01 $FF16

10 $FF17

11 color memory

The bits of color memory are interpreted differently. The high (flashing) bit is

ignored. The next three bits determine luminance as usual. But the foreground

color is determined only by the lower 3 bits of the low nybble. The high bit from

the low nybble determines whether this character is interpreted as high resolution

or multicolor. Thus, high-resolution characters and multicolor characters may

be mixed, but only the first eight colors are available for both types.

There is no hardware reverse, but that bit (bit 7 of $FF07) still determines the

size of the character set. If it is clear, screen codes from 128 to 255 result in the

same characters as 0 through 127. When it is set, the full 256 codes correspond to

separate character definitions.

In bit-map mode, every dot (or pair of dots) on the screen is individually

controlled by a bit (or pair of bits) in memory. To enter bit-map mode, bit 5 of

$FF06 must be set to 1. Normally, your bit map will come from RAM, so bit 2 of

$FF12 must be cleared to make the graphics chip look at RAM. The location of

the bit map itself is also set with $FF12. Bits 5 through 3 correspond to bits 15

through 13 of the address of the bit map. It must be on an 8K boundary.

Luminance for your bit map is located in the area of memory pointed to by

$FF14. Bits 7 through 3 of $FF14 correspond to bits 15 through 11 in the address

of the luminance memory (which occupies the position of color memory in

character mode). It must be on a 2K boundary. The color memory for your bit

map (which occupies the position of screen memory in character mode) is always

located IK above the luminance memory.

The screen organization for a bit map is oriented toward character cells. The

first byte represents the upper left corner of the screen. That and the next 7 bytes

fill the upper left character cell. The eighth byte begins the character cell imme

diately to the right of the first one. Page 223 has a diagram of the screen layout.

High-Resolution BitMaps In a high-resolution bit map, every dot on the screen

is individually controlled by a bit. The screen is organized as shown. Within each

of the 8000 bytes that make up the bit map, the high bit determines the status of

the leftmost dot on the screen, and the low bit determines the status of the

rightmost dot on the screen. The resolution is 320 by 200 (a total of 64000

individual dots).

Number of

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Byte 320

Byte 321

Byte 322

Byte 323

Byte 324

Byte 325

Byte 326

Byte 327

Byte 7680

Byte 7681

Byte 7682

Byte 7683

Byte 7684

Byte 7685

Byte 7686

Byte 7687

Bytes from the

Byte 8

Byte 9

Byte 10

Byte 11

Byte 12

Byte 13

Byte 14

Byte 15

Byte 328

Byte 329

Byte 330

Byte 331

Byte 332

Byte 333

Byte 334

Byte 335

Byte 7688

Byte 7689

Byte 7690

Byte 7691

Byte 7692

Byte 7693

Byte 7694

Byte 7695

Base of the Bit Map

Byte 16

Byte 17

Byte 18

Byte 19

Byte 20

Byte 21

Byte 22

Byte "23
Byte 336

Byte 337

Byte 338

Byte 339

Byte 340

Byte 341

Byte 342

Byte 343

Byte 7696

Byte 7697

Byte 7698

Byte 7699

Byte 7700

Byte 7701

Byte 7702

Byte 7703

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

312

313

314

315

316

317

318

319

632

633

634

635

636

637

638

639

7992

7993

7994

7995

7996

7997

7998

7999

Each byte in the luminance memory corresponds to a character cell on the bit

map. The luminance byte is treated as 2 nybbles. The high nybble determines the

luminance of bits that are off (0) in that character cell, and the low nybble

determines the luminance of bits that are on (1) in that character cell.

In a similar way, the colors of each dot are controlled by the color memory in

which each byte corresponds to a character cell. But here the high nybble

determines the color of bits that are on (1) in that character cell, whereas the low

nybble determines the color of bits that are off (0) in that character cell.

Note: The nybbles are reversed from luminance memory.

Multicolor Bit Maps By setting bit 4 of $FF07, the graphics chip is put into

multicolor mode. If this is done in addition to the steps for a bit map, a multicolor
bit map results. In a multicolor bit map, the screen is organized exactly as a

224 Programming Graphics

high-resolution bit map, except that each pair of dots on the screen is controlled

by a pair of bits in memory. This cuts the resolution to 160 by 200 (32000 dots).

But the color flexibility is increased by the addition of two global colors.

Within each byte of the bit map, the high 2 bits determine the color of the leftmost

pair of dots on the screen. The 2 low bits determine the color of the rightmost pair

of dots on the screen. The colors are determined as follows:

Bit Pair Luminance Source Color Source

00 $FF15 $FF15

01 low nybble of luminance high nybble of color

10 high nybble of luminance low nybble of color

11 SFF16 $FF16

Summary of Memory Map Considerations

This section is organized by each type of graphics mode and details the use of

memory. It is intended for quick reference. The previous section explains the

actual operation of each mode.

High-Resolution Characters

$FF07 Bit 7 determines hardware reverse on and 128 characters (0), or

reverse off and 256 characters (1).

SFF12 Bit 2 determines RAM (0) or ROM (1).

$FF13 Bits 7-2 determine location of character set (bits 15-10).

$FF14 Bits 7-3 determine location of color/screen memory (bits 15-11).

$FF15 Background luminance and color.

$FF19 Border luminance and color.

Character color* luminance, and flashing are determined by color memory (nor

mally $0800-$0BE7). Characters displayed are determined by screen memory

(normally $0C00-$0FE7).

Extended Color Characters

$FF06 Set bit 6 for extended color mode.

$FF07 Bit 7 determines 128 characters (0), or 256 characters (1).

Summary of Memory Map Considerations 235

$FF12 Bit 2 determines RAM (0) or ROM (1).

$FF13 Bits 7-2 determine location of character set (bits 15-10).

$FF14 Bits 7-3 determine location of color/screen memory (bits 15-11).

$FF15 Background 0 luminance and color.

$FF16 Background 1 luminance and color.

$FF17 Background 2 luminance and color.

$FF18 Background 3 luminance and color.

$FF19 Border luminance and color.

Character color and luminance are determined by color memory (normally

$0800-$0BE7). Characters displayed and their background color are determined

by screen memory (normally $0C00-$0FE7).

Multicolor Characters

SFF07 Set bit 4 for multicolor mode. Bit 7 determines 128 characters (0)

or 256 characters (1).

$FF12 Bit 2 determines RAM (0) or ROM (1).

$FF13 Bits 7-2 determine location of character set (bits 15-10).

$FF14 Bits 7-3 determine location of color/screen memory (bits 15-11).

$FF15 Background 0 luminance and color.

$FF16 Background 1 luminance and color.

$FF17 Background 2 luminance and color.

$FF19 Border luminance and color.

Character color, luminance, and high-resolution or multicolor status are deter

mined by color memory (normally $0800-$0BE7). Characters displayed are
determined by screen memory (normally $0C00-$0FE7).

High-Resolution Bit Map

$FF06

$FF12

Set bit 5 for bit-map mode.

Bit 2 determines RAM (0) or ROM (1). Bits 5-3 determine loca
tion of bit map (bits 15-13).

226 Programming Graphics

$FF14 Bits 7-3 determine location of luminance/color memory (bits

15-11).

$FF19 Border luminance and color.

The bit map displayed is determined by bit-map memory. The luminances ofboth

colors are determined by color memory (normally $0800-$0BE7). Color for both

colors is determined by screen memory (normally $0C00-$0FE7).

Multicolor Bit Map

$FF06 Set bit 5 for bit-map mode.

$FF07 Set bit 4 for multicolor mode.

$FF12 Bit 2 determines RAM (0) or ROM (1).

Bits 5-3 determine location of bit map (bits 15-13).

SFF14 Bits 7-3 determine location of luminance/color memory (bits

15-11).

$FF15 Background 0 luminance and color.

$FF16 Background 1 luminance and color.

$FF19 Border luminance and color.

The bit map displayed is determined by bit-map memory. The luminances of both

colors are determined by color memory (normally $0800-$0BE7). Color for both

local colors is determined by screen memory (normally $0C00-$0FE7).

Machine Language on the

Commodore Plus/4

A computer consists of a central processing unit (CPU), some memory, and

input/output (I/O) circuitry that communicates with the outside world. When

the CPU is a microprocessor, the computer is a microcomputer. The CPU of the

Commodore Plus/ 4 is a 7501 microprocessor. A computer program consists of a

list of instructions to the CPU that command it to perform operations on the

memory and the I/O units. Programming done at this level is called machine-

language programming. Higher-level languages such as BASIC are written in

machine language. An assembler may be used to allow a programmer to use

mnemonics for instructions and labels for memory locations. The term assembly

language refers to machine-language programs that are created with the use of an

assembler.

The 7501 microprocessor understands exactly the same instructions as the

6502 microprocessor. Because this instruction set originated with the 6502, it is

referred to as 6502 machine language.

This chapter should be sufficient for 6502 programmers to transfer their skills

to the Commodore Plus/4. It should also allow programmers of other micropro

cessors to begin programming in 6502. Programmers new to machine language of

any kind may want to refer to additional material on machine-language pro

gramming. Many such books are available.

Introduction to Using Machine Language

Programming in machine language (or machine code) puts your program in

complete control of what the computer is doing. To get this control, some of the

simplicity of programming in BASIC or another high-level language is sacrificed.

In general, programs in machine language are faster and more memory efficient

than programs in BASIC. When these qualities are required, the sacrifice is

worthwhile.

ZZ7

228 Machine Language on the Commodore Plus/4

The Commodore Plus/4 is equipped with a built-in machine-language moni

tor. The monitor is accessed from BASIC with the MONITOR command. Using

this monitor, machine-language programs may be entered and executed. Several

other functions are also provided (see the next section), making it possible to

experiment in machine language without purchasing any additional software.

The monitor is also very useful for debugging machine-language programs

created using an assembler.

Machine-language programming generally requires a more detailed knowl

edge of the hardware devices used in the computer than BASIC programming

does. Information on using the various chips in the Plus/4 is provided in the

appropriate chapter in this book. Some of the subroutines in the ROM of the

Plus/4 are available to the machine-language programmer. Information on these

subroutines is included in this chapter. These subroutines are particularly useful

in performing I/O operations for which many programmers do not want to write

their own code.

Machine-Language Monitor Commands

The monitor is entered by issuing the MONITOR command from BASIC. When

the monitor is entered, the current contents of the program counter (PC), status

register (SR), accumulator (AC), X register (XR), Y register (YR), and stack

pointer (SP) are displayed in hexadecimal.

MONITOR

PC SR AC XR YR SP

; 0000 00 00 00 00 P9

The screen editor is fully functional while you are in the monitor. That is,

whenever a RETURN is entered, the line on which the cursor resides is processed,

and the screen scrolls normally.

Whenever the monitor encounters an error in a line it is attempting to process,

a question mark is displayed and no action is taken. For a list of monitor

input/ output errors, see Appendix A.

Note: The monitor normally accesses RAM up to $8000 and ROM thereafter.

If you want to access all RAM, change location $07F8 to $80 (see M command).

To switch back to ROM, change it back to $00.

Entering a Program—The A or. Command

, The A (Assemble) command is used to enter a line of machine code. The syntax is

as follows:

Machine-Language Monitor Commands 229

A address opcode mnemonic operand

or

. address opcode mnemonic operand

The address is the hexadecimal address at which the line of machine code is

placed.

The opcode mnemonic is a valid 6502 mnemonic (see section on 6502 instruc

tion set).

The operand is a valid 6502 operand (see section on 6502 instruction set and

addressing modes).

When such a line and a RETURN are entered, the monitor translates the

mnemonic and operand into hexadecimal and outputs them. Then it automati

cally calculates the next available address and waits for the next line of code. If

only a RETURN is entered following the A address prompt, the monitor exits

assembly mode. If an incorrect line is entered, the translation to hexadecimal is

not done, and a question mark is displayed. Also, the monitor does not attempt to

calculate a next available address.

Example: A 2000 LDA #$05

will result in the following display:

A 2000 A9 05 LDA #$05

A SOOS

The monitor is asked to assemble a load accumulator with the number 5 instruc

tion at the address $2000. It translates this into the hexadecimal codes A9 and 05.

It then prompts for the next line of code at address $2002.

Comparing Two Sections of Memory—The C Command

The C (Compare) command is used to find the differences in content between two

sections of memory. The syntax is as follows:

C start address 1 end address 1 start address 2

The start address 1 is the hexadecimal address at which the first section of

memory begins. The end address 1 is the last hexadecimal address of the first

section of memory. The start address 2 is the hexadecimal address of the section

of memory to compare with the previously defined section. No end address is

230 Machine Language on the Commodore Plus/4

needed for the second section of memory; it is assumed to be the same length as

the first section. The specified end and start points are included in the Compare.

The monitor reports in ascending order all addresses from the first section that

do not have the same contents as the corresponding address in the second section.

If the two sections of memory are found to be identical, only a RETURN is

output.

Example: C 3000 3004 2000

3003 3004

The monitor is asked to compare the contents of the section of memory from

$3000 to $3004, inclusive, with the contents of the section ofmemory from $2000

to $2004 inclusive. It reports that the contents of $3003 do not match those of

$2003 and that the contents of $3004 do not match those of $2004.

Examining a Program—The D Command

The D (Disassemble) command is used to view a line or lines of machine code.

The syntax is as follows:

D start address end address

The start address is the optional hexadecimal address at which the disassembly

starts. The end address is the optional hexadecimal address at which the disas

sembly stops.

The monitor attempts to translate the contents of the designated section of

memory into opcode mnemonics and operands. When an illegal opcode is

encountered, question marks are displayed. The specified end address is the last

location disassembled unless it occurs in the middle of an instruction, in which

case the entire instruction is disassembled. If the end address is not specified, 21

memory locations are disassembled. If no addresses are specified, disassembly

begins one location beyond the last location accessed. Thus, code is continually

disassembled 21 locations at a time when you enter the D command repeatedly.

The disassembly is displayed on the screen preceded by a period and the

address at which the instruction starts. Since the period is the equivalent of an A

(Assemble) command, cursoring to a disassembled line, changing the mnemonic

opcode or operand, and entering a RETURN is a good way to correct

instructions.

Note: You cannot correct instructions by changing the hexadecimal dump

before the opcode mnemonic.

Example: D F2A4 F&A8

. F2A4 AS FF LDX #$FF

P2A.6

PSA7

F&A8

78

9A

D8

SEI

TXS

OLD

anguage Monitor Commands 231

The monitor is asked to disassemble the contents of ROM locations $F2A4

through $F2A8 inclusive. It displays the contents in hexadecimal and in mne

monic opcodes and operands.

Pilling Memory with a Specified Byte—The F Command

The F (Fill) command is used to insert a single specified data byte into every

location of a section of memory. The syntax is as follows:

P start address end address data byte

The start address is the hexadecimal address at which the section of memory

begins. The end address is the last hexadecimal address of the section of memory.

The data byte is the hexadecimal number (one or two digits) to be inserted into

each memory location.

Every location from the starting address through the ending address is set

equal to the specified data byte. If you attempt to alter ROM locations in this

way, the RAM under the ROM is filled with the specified data byte.

Example: P 3000 3004 PF

The monitor is asked to insert the value $FF into every memory location from

$3000 to $3004 inclusive.

Executing a Program—The G Command

The G (Go) command is used to begin execution of a machine code program. The

syntax is as follows:

G address

The address is the optional hexadecimal address at which the execution begins.

The monitor begins executing instructions at the address specified. If no

address is specified, execution begins at the current value of the program counter.

To view the current value of the program counter, use the R command. To return

to the monitor after execution, the machine language program must end with a

BRK instruction. The value of the program counter following the execution of a

BRK instruction is not necessarily the address of the instruction following the

BRK. Care must be taken when you do not specify the starting address.

232 Machine Language on the Commodore Plus/4

Example: G 2000

The monitor is asked to begin executing with the instruction at location $2000.

Searching Memory for Specified Bytes—The H Command

The H (Hunt) command is used to search a section of memory for occurrences of

specified data byte(s). The syntax is as follows:

H start address end address data

The start address is the hexadecimal address at which the section of memory

begins.

The end address is the last hexadecimal address of the section of memory.

The data are the one or more hexadecimal bytes (one or two digits) separated

by spaces, or a character string preceded by a single quote.

Every location from the starting address through the ending address is exam

ined and compared with the first byte of the data. When a match is found, the next

location is compared with the second byte, and so on until a difference is found. If

no difference is found, the starting location of the data in memory is displayed.

If the data are specified by the use of a character string, the bytes that match are

the corresponding CHR$ codes (see Appendix C) of the characters.

Example: H 8000 FPFP 43 42 4D

8007 PC56

The monitor is asked to search every memory location from $8000 to $FFFF

inclusive for the start of the sequence $43, $42, $4D. The monitor finds this exact

sequence twice, starting at $8007 and starting at $FC56.

Example: H 8000 PFPP 'COMMODORE

80CP E3A7

The monitor is asked to search every memory location from $8000 through

$FFFF for the start of the sequence of bytes given by the CHR$ codes of each

letter in the word "COMMODORE." It finds this sequence twice, starting at

$80CF and at $E3A7.

Loading from Cassette or Disk—The L Command

The L (Load) command is used to load a machine-language program previously

saved (see the section on the S command) on cassette or disk. The syntax is as

follows:

Macliiii6-Ij&iigua.g6 Monitor Commands 833

Example:

L filename,device

Thefilename is the optional Plus/4 file name surrounded by quotation marks.

The device is the optional Plus/4 device number (see Chapter 6).

The monitor loads the specified program file into memory. The file must be a

program-type file (see Chapter 6) because these have the start address for loading

stored in the first 2 bytes of the file. These bytes are created by the save (S)

command and represent the first location that was saved into the file. Hence, a

program is always loaded into the same section of memory from which it was

saved.

If the file name is omitted, the device must be the cassette. If the device is

omitted, it is assumed to be the cassette.

L"TEST",8

SEARCHING FOR TEST

LOADING

The monitor is asked to load the program "TEST"from the disk drive (device 8).

It reports that it is searching for the file, and when the file is found, the LOAD

ING message appears.

Example: L

PRESS PLAY ON TAPE

OK

SEARCHING

FOUND

LOADING

The monitor is asked to load the next program on the cassette. It reports when the

file is found and when loading begins.

Examining Memory—The M Command

The M (Memory) command is used to examine a section of memory. The syntax

is as follows:

M start address end address

The start address is the optional hexadecimal address at which the memory

dump starts. The end address is the optional hexadecimal address at which the

memory dump stops.

The monitor outputs the contents of the specified section of memory to the

screen 8 bytes per line. The specified end address is the last location dumped

unless it occurs in the middle of a set of 8 bytes, in which case the entire set is

234 Machine Language on the Commodore Plus/4

displayed. If the end address is not specified, 96 memory locations are displayed.

If no addresses are specified, the memory dump begins one location beyond the

last location accessed. Thus, memory is continually dumped 96 locations at a time

when you enter the M command repeatedly.

The memory dump is displayed on the screen preceded by a greater-than sign

and by the address at which the line starts. Because the greater-than sign is used to

change memory locations, cursoring to a dumped line, changing the desired

memory location(s), and entering a RETURN is a good way of altering the

contents of memory. If you attempt to alter ROM locations in this way, the

contents of the ROM are redisplayed. The RAM under the ROM will be altered.

Example: M 80CP 80D7

>80CF 43 4F 4D 4D 4F 44 4F 52

>80D7 45 SO 42 41 53 49 43 20

Note: Text that would be displayed in reverse mode on your screen is shown

boxed in this book.

The monitor is asked to display the contents ofmemory locations $80CF through

$80D7. It displays the contents in hexadecimal and as characters.

Changing Memory—The > Command

The > (greater-than sign) command is used to change the contents of memory.

The syntax is as follows:

> address data

The address is the starting address for the memory change.

The data are 1 to 8 hexadecimal bytes of data separated by spaces to be placed

in memory.

The monitor places the specified data bytes into memory starting at the

specified address. If more than 8 data bytes are specified, the excess is ignored.

After placing the bytes in memory, the monitor displays the contents of the

memory as in the M (Memory) command. If ROM locations are specified the

data are placed in the RAM underneath, but the contents of the ROM are

displayed.

Example: >2000 43 59 4E 44 49 45 20 4D

results in the following display:

>2000 43 59 4E 44 49 45 20 4D :1CYKTDIE M|

Machine-Language Monitor Commands 235

The monitor is asked to place the bytes $43, $59, $4E, $44, $49, $45, $20, and $4D

in memory starting at $2000. It does so and displays the resulting contents of

$2000 through $2007.

Examining Registers—The R Command

The R (Register) command is used to display the contents of the 6502 registers.

The syntax is as follows:

R

The monitor displays the contents of the 6502 registers. Listed will be the

program counter (PC), status register (SR), accumulator (A), X register (XR), Y

register (YR), and stack pointer (SP). The register dump is displayed on the

screen preceded by a semicolon. Since the semicolon is used to change register

contents, cursoring up to that line, changing the desired register(s), and entering a

RETURN is a good way of altering the contents of the registers.

Example: R

PC SR AC XR YR SP

; OOOOOO 00 00 00 F9

The monitor is asked to display the contents of the 6502 registers and does so.

Changing Registers—The ; Command

The ; (semicolon) command is used to change the contents of the 6502 registers.

The syntax is as follows:

; PC SR AC XR YR SP

The PC is the new program counter in hexadecimal.

The SR is the new status register in hexadecimal.

The AC is the new accumulator in hexadecimal.

The XR is the new X register in hexadecimal.

The YR is the new Y register in hexadecimal.

The SP is the new stack pointer in hexadecimal.

The monitor places the specified data bytes into the 6502 registers. This

command is normally executed following an R (Register) command by cursoring

back to its output line, changing the appropriate numbers, and entering a

RETURN. Only the register(s) to be changed and values for those displayed to

the left of them must be entered.

236 Machine Language on the Commodore Plus/4

Example: ; 2000 00 05

The monitor is asked to change the program counter to $2000, the status register

to $00, and the accumulator to $05. The remaining registers are unchanged.

Performing an R command at this point verifies the changes.

R

PC SR AC XR YR SP

; 2000 00 05 00 00 P9

Saving on Cassette or Disk—The S Command

The S (Save) command is used to save a section of memory on cassette or disk.

The syntax is as follows:

S filename,device,start address,end address

Thefilename is the Plus/4 file name surrounded by quotation marks.

The device is the Plus/4 device number (see Chapter 6).

The start address is the address of the first location to save.

The end address is the address FOLLOWING the last location to save.

The monitor saves the specified section of memory in a program file with the

specified name. It automatically saves the start address in the first two bytes of the

file, so that it is loaded into the proper memory location by the L (Load)

command. It is important to note carefully that the memory range specified is

NOT saved inclusively; rather, the start address is included and the end address is

not.

Example: S"TEST",8,8000,3000

SAVING TEST

The monitor is asked to save the contents ofmemory from $2000 through $2FFF

as the program "TEST" on the disk drive (device 8). It reports that it is saving the

file.

Example: S"TEST",1,2000,2100

PRESS PLAY & RECORD ON TAPE

OK

SAVING TEST

The monitor is asked to save the contents ofmemory from $2000 through $20FF

as the program "TEST" on the cassette (device 1).

Machine-Language Monitor Commands 237

Copying a Section of Memory—The T Command

The T (Transfer) command is used to copy the contents of a section of memory

into another section of memory. The syntax is as follows:

T start address 1 end address 1 start address 2

The start address 1 is the hexadecimal address at which the section ofmemory

to be copied begins.

The end address 1 is the last hexadecimal address of the section of memory to

be copied.

The start address 2 is the hexadecimal address of the destination section of

memory.

No end address is needed for the destination section of memory. It is assumed

to be the same length as the section of memory to be copied. The specified end and

start points are copied.

The monitor places the contents of the specified section of memory into the

destination section of memory. The contents of the first section are not altered,

and the previous contents of the destination section are lost. A transfer from a

ROM section copies the contents of the ROM. A transfer to a ROM area places

the copied data in the RAM underneath.

A section of memory may be successfully transferred to an overlapping desti

nation section if the destination section begins at an address lower than the

original section. Attempts to transfer to an overlapping section beginning in the

middle of the original section do not result in copying the information correctly.

Example: T S000 20FF 3000

The contents of $2000 through $20FF are copied into $3000 through $30FF.

Verifying a File on Cassette or Disk—The V Command

The V (Verify) command is used to compare the contents of a file saved on

cassette or disk with the contents of memory. The syntax is as follows:

V filename,device

Thefilename is the optional Plus/4 file name surrounded by quotation marks.

The device is the optional Plus/4 device number (see Chapter 6).

The monitor compares the specified program file with memory. The file must

be a program-type file (see Chapter 6), as these have the start address for

comparing stored in the first two bytes of the file. These bytes are created by the

238 Machine Language on the Commodore Plus/4

Save (S) command and represent the first location that was saved to the file.

Hence, a program is always compared with the same section of memory from

which it was saved. If the file name is omitted, the device must be the cassette. If

the device is omitted, it is assumed to be the cassette.

If any differences between the contents of the file and the memory from which

it was saved are found, a verifying error is reported. If the memory has not been

changed since the save, the file should be saved again, possibly on a different tape

or disk.

Example: V"TEST",8

SEARCHING FOR TEST

VERIFYING ERROR

The monitor is asked to compare the program "TEST"from the disk drive (device

8) with the section of memory from which it was saved. A difference is found and

reported as an error.

Example: V

PRESS PLAY ON TAPE

OK

SEARCHING

FOUND

VERIFYING

The monitor is asked to compare the first program on the cassette with the

memory from which it was saved. No differences are found.

Exiting to BASIC from the Monitor—The X Command

The X (Exit) command is used to return to BASIC from the monitor.

The syntax is as follows:

Control is returned to the BASIC language interpreter. If the stack pointer has

been altered while in the monitor, the BASIC CLR command should be executed

when you return to BASIC.

Example: X

READY.

CLR

READY.

The 6803 Microprocessor 239

The 6502 Microprocessor

The actual microprocessor chip used in the Plus/4 is a 7501. However, for

programming purposes, this chip is the same as a 6502. In this section, the

operation of the microprocessor is reviewed. Programmers familiar with any

machine language should be able to adapt to the 6502 after studying this section.

The examples in this section are designed to show the usage of the 6502

instruction set and can be entered (and saved on cassette or disk) using the built-in

machine-language monitor (see previous section).

Registers

The 6502 is equipped with six internal registers. These registers are accessed with

special instructions, which are not the same as instructions that access memory

locations. Three of these registers are user registers. It is usually faster to access

the registers than to access memory, so using them efficiently can speed up a

machine-language program.

TheProgram Counter The program counter (PC) is a 16-bit register that stores

the address of the next instruction to be executed. When an instruction is

executed, the PC is incremented so as to point to the following instruction. When

a branch or jump instruction is executed, the PC is changed accordingly.

The Status Register The status register (SR) is an 8-bit register containing the

status flags for the microprocessor. Only 7 bits are actually used, and they are

assigned as follows:

Bit Label Name Usage

7 N Negative This bit is set to 1 when the last result had the

high (sign) bit set to 1 and cleared to 0 when

the last result had the high bit cleared to 0.

6 V Overflow This bit is set to 1 when the last operation

resulted in a two's complement arithmetic

overflow. That is, two numbers with the

same sign were added, resulting in a number

of the opposite sign; a positive number was

subtracted from a negative number yielding

a positive number; or a negative number

was subtracted from a positive number

yielding a negative number. If no overflow

occurred, it is cleared to 0.

240 Machine Language on the Commodore Plus/4

Bit Label Name Usage

5

4 B

D

Not Used

Break

Decimal

Interrupt

Zero

Carry

This bit is set to 1 only when the last instruc

tion was a BRK, and is cleared to 0

otherwise.

This bit is set to 1 when the microprocessor is

operating in decimal mode and is cleared to

0 otherwise.

When this bit is set to 1, maskable interrupts

are not performed. When it is cleared to 0

interrupts are restored.

This bit is set to 1 when the last result was zero

and cleared to 0 when the last result was

nonzero.

The carry is set to 1 if the last addition

resulted in a carry or the last subtraction did

not require a borrow. Otherwise it is cleared

toO.

The Accumulator The accumulator (.A) is an 8-bit general purpose register. It

is generally used as the main communication register between segments of code.

TheXRegister The X register (.X) is an 8-bit index register. It may be used as an

index (see sections on indexed and indexed indirect addressing) or as temporary

storage for intermediate results.

The YRegister The Y register (.Y) is an 8-bit index register. It may be used as an

index (see sections on indexed and indirect indexed addressing) or as temporary

storage for intermediate results.

The Stack Pointer The stack pointer (SP) is an 8-bit register that contains the

current pointer to the stack on page 1 (see the next section on the stack).

The Stack

The 6502 maintains a 256-byte stack that is always located on page 1 (memory

locations $0100 through S01FF). The stack pointer register (SP) maintains the

current position within the stack. It is initially set by the operating system at $FF

to point to the first position ($01FF). When an item is pushed onto the stack, it is

The 6502 Microprocessor 241

placed at the position indicated by the SP, and the SP is decremented. When an

item is pulled from the stack, the SP is incremented, and the value is gotten from

the position indicated by this new value for the SP. In addition to being affected

when a push onto or pull from the stack is performed, the SP value can be altered

with the TXS instruction or put into the X register with the TSX instruction.

The stack is used by the processor to store the return address for a return from

subroutine. When a JSR instruction is executed, the address of the last byte of the

JSR instruction is pushed onto the stack (using two stack locations). When an

RTS instruction is executed, the 2 bytes are pulled from the stack and placed in

the program counter. The PC is then incremented and points to the instruction

following the JSR instruction.

The processor uses the stack in a similar fashion when it receives an interrupt.

In this case, however, not only the return address but also the current value of the

status register are pushed onto the stack before the interrupt is processed. When

an RTI instruction is executed, the status register value and the 2 return address

bytes are pulled off the stack and restored.

Four additional instructions affect the stack: PHA, PHP, PLA, and PLP.

PHA and PHP push the accumulator and status register, respectively, onto the

stack. PLA and PLP pull a value from the stack and place it in the accumulator

and status register, respectively.

Care must always be taken to maintain the stack properly; that is, do not

perform a JSR without a corresponding RTS, and vice versa. Do not perform a

PHA or PHP without a corresponding PLA or PLP. Failure to properly match

the pushes with pulls from the stack may have bizarre and unpredictable results.

It is possible to overflow the stack. Usually this occurs because of improper

nesting rather than an actual need for more space. If a program overflows the

stack from a need for more space, it should be reorganized to use the stack more

sparingly.

Instruction Set

The instructions available in the 6502 microprocessor are presented in alphabeti

cal order. A short explanation of the instruction, and which registers and flags it

affects, introduces the instruction. The following table shows the available

addressing modes for the instruction (see the next section for an explanation of all

the addressing modes), the proper syntax for using the instruction from the

built-in machine-language monitor, the hexadecimal opcode, the number of

bytes the instruction occupies, and the number of machine cycles it takes to

execute. At the end of this section, all of this information is briefly summarized.

Each instruction is accompanied by short example programs. These programs

may be entered through the machine-language monitor (see the previous section

242 Machine Language on the Commodore Plus/4

on the monitor). The examples may use concepts that are fully explained else

where in this book in addition to the instruction they are listed with.

Following is a list of the notation used in this section:

A

B

C

D

h

I

M

N

V

X

Y

Z

A

V

~

1

t

Accumulator

Break flag

Carry flag

Decimal mode flag

Hexadecimal digit (0 - F)

Interrupt disable flag

Memory location

Negative flag

Overflow flag

X register

Y register

Zero flag

Logical AND

Logical OR

Logical exclusive OR

Logical inverse

Push onto stack

Pull from stack

Transfer

Transfer

ADC—Add Memory to Accinnulator with Carry

The value currently in the accumulator plus the carry is added to the specified

operand, and the result is placed in the accumulator. Normally the carry is cleared

(see CLC) prior to an addition. When in decimal mode, the Z flag is not valid;

check the accumulator for a zero result.

The 6502 Microprocessor 243

Operation:

Addressing Mode Syntax

Flags Affected: N, Z, C, V

Opcode Bytes Cycles

Example:

Immediate

Zero page

Zero page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

ADC #$hh

ADC $hh

ADC $hh,X

ADC Shhhh

ADC $hhhh,X

ADC $hhhh,Y

ADC ($hh,X)

ADC ($hh),Y

69

65

75

6D

7D

79

61

71

2

2

2

3

3

3

2

2

2

3

4

4

4*

4*

6

5*

* Add 1 when a page boundary is crossed.

The status of the carry following an addition reflects the result. If a carry was

generated, the carry is set to 1. If no carry was generated, the carry is cleared to 0.

This fact allows multiple precision additions, as shown in the example. If the

result is negative, the N flag is set to 1; otherwise, it is cleared to 0. If the result is

zero, the Z flag is set to 1; otherwise it is cleared to 0. If the result exceeds+127 or

-128, the overflow flag is set to 1; otherwise it is cleared to 0.

Frequently it is necessary to have a greater precision in calculations than the 256

possible values for a single byte. This is possible by treating a group of two or

more bytes as a single number. In this example, the two 32-bit numbers stored at

$2100-$2103 and $2104-$2107 (high byte to low byte) are added, and the result is

stored in $2108-$210B.

. 2000 18

. 2001 A2 03

. 2003 BD00 21

. 2006 7D 04 21

. 2009 9D 08 21

. 200C CA

. 200D 10 P4

. 200F 00

CLC

LDX #$03

LDA $2100,X

ADC $2104,X

STA $2108,X

DEX

BPL $2003

BRK

Clear the carry prior to the first

addition.

.X will index through the 4 bytes.

Get a byte of the first number.

Add corresponding byte from the

second number.

Store the result in destination.

Decrement .X to point at the next

byte.

Continue processing until all 4 bytes

are done.

Stop processing. *

Use the M (Memory) command to examine and modify the contents of

$2100-$2107 before executing the program (using G 2000). Then check the

244 Machine Language on the Commodore Plus/4

contents of $2100-$21OB after the program executes. The values in $2108-$21OB

will be the sum of $2100-$2103 and $2104-52107.

The carry flag is used to transmit the carry information between the bytes.

Before the first ADC, the carry is cleared, so the first result is correct. If a carry is

produced, it is automatically added into the next byte because the program does

not clear the carry before performing the next ADC.

AND—AKTD Memory with Accumulator

The value currently in the accumulator is logically ANDed to the specified

operand, and the result is placed in the accumulator.

Operation: A A M —

Addressing Mode

Immediate

Zero page

Zero page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

A

Syntax

AND #$hh

AND $hh

AND $hh,X

AND Shhhh

AND $hhhh,X

AND $hhhh,Y

AND ($hh,X)

AND ($hh),Y

Flags Affected: N, Z

Opcode

29

25

35

2D

3D

39

21

31

Bytes

2

2

2

3

3

3

2

2

Cycles

2

3

4

4

4*

4*

6

5*

* Add 1 when a page boundary is crossed.

Those bits that are set to 1 in both the value in the accumulator and the value in

the operand are set to 1 in the result. Bits that are cleared to 0 in either value are

cleared to 0 in the result. If the result has the high bit set to 1, the N flag is set to 1;

otherwise, it is cleared to 0. If the result is zero, the Z bit is set to 1; otherwise, it is

cleared to 0.

Example: The AND instruction is useful when one or more bits of a byte must be cleared to

0 while the other bits remain unchanged. This example increments the luminance

of the screen without affecting the color and times itself by looking at a single bit

in the jiffy clock timer on zero page.

. 2000 A9 00 LDA #$00 Start at zero luminance.

. 2002 85 FF STA $FP Save current luminance at $FF.

. 2004 AD 15 FP LDA $FF15 Get value of background register.

. 2007 29 OF AMD #$0F Do not change the color bits.

. 2009 05 FF 0RA IFF Put in luminance.

. 200B 8D 15 FF STA $FF15 Put value into background register.

The 6508 Microprocessor 245

200E

2010

2012

2014

2016

S018

201A

201B

201D

20IF

2021

2023

A5

29

FO

A5

29

DO

18

AS

69

85

10

00

A5

08

FA

A5

08

FA

FF

10

FF

El

LDA

AND

BEQ

LDA

AND

BNE

CLC

LDA

ADC

STA

BPL

BRK

$A5

#$08

$200E

$A5

#$08

$2014

$FF

#$10

$FF

$2004

Get low byte of jiffy clock.

Wait until bit 3 is on.

If it is still off, keep waiting.

Get low byte of jiffy clock.

Wait until bit 3 is off.

If it is still on, keep waiting.

Get ready to calculate new luminance

Get current value.

Add $10 to it to go up one luminance

level.

Save it.

If not at $80, go on.

Stop execution.

The program is executed using G 2000.

ASL-Shift Left One Bit

Each bit in the specified operand is shifted one bit to the left. The high bit is

shifted into the carry flag, and a 0 is shifted into the low bit.

Operation: C*-[7

Addressing Mode

OJ-0

Syntax

Flags Affected: N, Z, C

Opcode Bytes Cycles

Accumulator

Zero page

Zero page, X

Absolute

Absolute, X

ASL

ASL $hh

ASL $hh,X

ASL $hhhh

ASL $hhhh,X

OA

06

16

OE

IE

1

2

2

3

3

2

5

6

6

7

Bit 7 of the operand is shifted into the carry flag. Bits 6 through 0 are shifted

into bits 7 through 1, respectively. A 0 is shifted into the low bit. If the result is

negative, the N flag is set to 1; otherwise it is cleared to 0. If the result is zero, the Z

bit is set to 1; otherwise it is cleared to 0.

Example: This program uses the ASL instruction to move lunlinances (0 through 7) into the

high nybble of a byte so that they can be placed in the background register.

• 2000 A2 00 EDX #$00 .X will store the current luminance.

. 2002 86 FF STX $FF $FF is a temporary location for the

shifting.

. 2004 06 FF ASL $FF Shift the luminance left four times

. 2006 06 FF ASL $FF to get it into correct position

246 Machine Language on the Commodore Plus/4

2008

200A

200C

200F

2011

2013

2016

2018

201A'
201C

201E

2020

2022

2023

2025

2027

06

06

AD

29

05

8D

A5

29

F0

A5

29

D0

E8

E0

D0

00

FF

FF

15

0F

FF

15

A5

08

FA

A5

08

FA

08

DB

ASL

ASL

FF LDA

AND

ORA

FF STA

LDA

AND

BBQ

LDA

AND

BNE

INX

CPX

BNE

BRK

$FF

$FF

5FF15

#$0F

$FF

$FF15

$A5

#$08

$2016

$A5

#$08

$201C

#$08

$2002

for putting in the background color

register.

Get value in background register.

Clear the luminance bits.

Put in the new luniance information.

Put value in background register.

Get low byte of jiffy clock timer.

Look at bit 3.

If still zero, look again.

Get low byte of jiffy clock timer.

Look at bit 3.

If still one, look again.

Increment the current luminance.

See if finished.

If not, go on.

Stop execution.

Execute the program with G 2000.

BCC—Branch If Carry Flag Is Clear

This instruction examines the current status of the carry bit. If it is cleared to 0,

the branch occurs. If it is 1, the branch does not occur, and execution continues

with the following instruction.

Example:

Operation: Branch on C- 0

Addressing Mode Syntax

Flags Affected: None

Opcode Bytes Cycles

Relative BCC Shhhh 90 2*

* Add 1 cycle when the branch is taken. Add 2 cycles when it is taken across a page boundary.

When adding a 1-byte number to a 2-byte number, you can use standard double

precision addition, but the operation may be speeded up by using a BCC to

determine when to increment the high byte. In this example, the 8-bit number

stored at $2100 is added to the 16-bit number stored at $2101 -$2102 (high byte to

low byte), and the result is stored in $2101-$2102.

Clear carry flag prior to addition.

Get single byte to add.

Add to low byte of $2101-$2102.

Store result.

If carry is clear, branch to finish.

Otherwise, increment the high byte.

Stop execution.

sooo

2001

2004

2007

200A

200C

200F

18

AD

6D

8D

90

EE

00

00

02

02

03

01

21

21

21

21

CLC

LDA

ADC

STA

BCC

INC

BRK

$2100

$2102

$2102

$200P

$2101

The 6802 Microprocessor 847

Use the M (Memory) command to examine and modify the contents of

$2100-52102 before executing the program (using G 2000). Then check the

contents of $2100-$2102 after the program executes. The values in $2101-$2102

are the sum of their earlier values and the value in $2100.

BCS—Branch If Carry Flag Is Set

This instruction examines the current status of the carry bit. If it is set to 1, the

branch occurs. If it is 0, the branch does not occur, and execution continues with

the following instruction.

Operation: Branch on C- 1 Flags Affected: None

Addressing Mode Syntax Opcode Bytes Cycles

Relative BCS $hhhh B0 2 2*

* Add 1 cycle when the branch is taken. Add 2 cycles when it is taken across a page boundary.

Example: When subtracting a 1-byte number from a 2-byte number, you can use standard

double precision subtraction, but the operation may be speeded up by using a

BCS to determine when to decrement the high byte. In this example, the 8-bit

number stored at $2100 is subtracted from the 16-bit number stored at

$2101-$2102 (high byte to low byte), and the result is stored in $2101-$2102.

2000

2001

2004

2007

200A

200C

200F

38

AD

ED

8D

BO

CE

00

OS

00

02

03

01

21

21

21

21

SEC

LDA

SBC

STA

BCS

DEC

BRK

$2102

#2100

12102

$200F

12101

Set carry flag prior to subtraction.

Get low byte of $2101-$2102.

Subtract single byte.

Store the result.

If carry set, branch to finish.

Otherwise, decrement the high byte.

Stop execution.

Use the M (Memory) command to examine and modify the contents of

$2100-$2102 before executing the program (using G 2000). Then check the

contents of $2100-$2102 after the program executes. The values in $2101-$2102

are the difference between their earlier values and the value in $2100.

BEQ—Branch If Zero Mag Is Set

This instruction examines the current status of the zero flag bit. If it is set to 1, the

branch occurs. If it is 0, the branch does not occur, and execution continues with

the following instruction.

248 Machine Language on the Commodore Plus/4

Operation: Branch on Z- 1 Flags Affected: None

Addressing Mode Syntax Opcode Bytes Cycles

Relative BEQ $hhhh FO 2 2*

* Add 1 cycle when the branch is taken. Add 2 cycles when it is taken across a page boundary.

Example: In this example, the BEQ instruction is used to cause the program to continue

looping until a key is hit.

. S000 20 E4 FP JSR $FFE4 Call the ROM subroutine to look for

input.

. 2003 FO FB BEQ $2000 If zero is returned, then there is no

input, so look again.

. 2005 00 BRK Stop processing.

BIT—Test Bits in Memory with Accumulator

Bits 6 and 7 of the operand are transferred to the V and N flags. The values in the

accumulator and the operand are logically ANDed, and a zero result is indicated

in the Z flag. Neither the value in the accumulator nor in the operand is altered.

Operation: A AM Flags Affected: N, Z, V

M7-N

M6-V

Addressing Mode Syntax Opcode Bytes Cycles

Zero page BIT $hh 24 2 3

Absolute BITShhhh 2C 3 4

If bit 7 is set to 1 in the specified memory location, then the N flag is set to 1;

otherwise it is cleared to 0. If bit 6 is set to 1 in the specified memory location, then

the V flag is set to 1; otherwise it is cleared to 0. If the result of ANDing the value

in the accumulator with the value in the specified memory location is 0, the Z flag

is set to 1; otherwise it is cleared to 0. The values stored in the accumulator and the

memory location are not changed.

Example: The BIT instruction is particularly useful when information is required about

some memory location, but the value in the accumulator must be preserved. The

example counts the number of bits set to 1 in the value stored at $2100. The

accumulator keeps track of which bit it is on.

. 2000 A2 00 LDX #$00 .X will contain the bit count.

The 6502 Microprocessor 249

. 2002 A9 01 LDA #$01 Start looking at bit 0.

. 2004 2C 00 21 BIT $2100 See if this bit is set in $2100.

. 2007 FO 01 BEQ $200A If not, go on to next bit.

. 2009 E8 INX Increment the bit count.

. 200A OA ASL Shift left to the next bit.

. 200B 90 P7 BCC $2004 When carry is set, then program is

done.

. 200D 00 BRK Stop execution.

The number of bits set to 1 in $2100 is in the X register when the BRK

instruction is executed. The contents of the registers are displayed when a BRK is

executed by the BRK instruction processor.

BMI—Branch. If Negative Flag Is Set

This instruction examines the current status ofthe negative flag bit. If it is set to 1,

the branch occurs. If it is 0, the branch does not occur, and execution continues

with the following instruction.

Operation: Branch on N - 1 Flags Affected: None

Addressing Mode Syntax Opcode Bytes Cycles

Relative BMI $hhhh 30 2_ 2*

* Add 1 cycle when the branch is taken. Add 2 cycles when it is taken across a page boundary.

Example: In this program, the locations from $2100 to $217F that hold a nonnegative

number are counted. The BMI instruction is used to determine when a negative

number is encountered (it is not counted).

.Y counts the nonnegative numbers.

.X contains the pointer to the current

location.

Get value of next location.

If it is negative, do not count it.

Count a nonnegative location.

Bump the pointer.

If not finished, keep going.

Stop processing.

The count is displayed as the contents of the Y register when the BRK

instruction is executed.

. 2000

. 2002

. 2004

. 2007

. 2009

. 200A

. 200B

. 200D

AO

A2

BD

30

08

E8

DO

00

00

80

80

01

P7

LDY

LDX

20 LDA

BMI

IEY

INX

BNE

BRK

#$oo

#$80

$2080,

$200A

$2004

280 Machine Language on the Commodore Plus/4

BNE—Branch If Zero Flag Is Clear

This instruction examines the current status of the zero flag bit. If it is cleared to 0,

the branch occurs. If it is 1, the branch does not occur, and execution continues

with the following instruction.

Operation: Branch onZ-0 Flags Affected: None

Addressing Mode Syntax Opcode Bytes Cycles

Relative BNE $hhhh DO 2 2*

* Add 1 cycle when the branch is taken. Add 2 cycles when it is taken across a page boundary.

Example: In this program, the contents of$2100-$21FF are copied into $2200-$22FF. The

BNE instruction is used to continue looping until the X register reaches zero.

. 2000 A2 00 LDX #$00 Start counter at zero.

. 2002 BD 00 21 LDA $2100,X Get value from original area.

. 2005 9D 00 22 STA $2200,X Put value in destination area.

. 2008 CA DEX Decrement counter.

. 2009 DO P7 BWE $2002 If not done, go back.

• 200B 00 BRK Stop processing.

Use the M (Memory) command to examine or change the contents of the

memory areas.

BPL—Branch If Negative Mag Is Clear

This instruction examines the current status of the negative flag bit. If it is cleared

to 0, the branch occurs. If it is 1, the branch does not occur, and execution

continues with the following instruction.

Operation: Branch onN-0 Flags Affected: None

Addressing Mode Syntax Opcode Bytes Cycles

Relative BPL $hhhh 10 2 2*

* Add 1 cycle when the branch is taken. Add 2 cycles when it is taken across a page boundary.

Example: This program copies the contents of the color registers ($FF15-$FF19) into

memory at $2100-$2104. The BPL instruction is used to determine when the

process is complete.

The 6502 Microprocessor 351

. 2000 A2 04 LDX #$04 Start counter at highest byte to copy.

. 2002 BP 15 PF LDA $FF15,X Get register value.

. 2005 9D 00 21 STA $2100,X Store in memory.

. 2008 CA DEX Decrement the counter.

. 2009 10 F7 BPL $2002 If not done, continue.

. 200B 00 BRK Stop processing.

BRK—Force an Interrupt

An interrupt occurs, the values of the PC and SR are pushed on the stack, and

processing continues through the IRQ vector.

Operation: PC + 2 1 Flags Affected: B

SRI

Addressing Mode Syntax Opcode Bytes Cycles

Implied BRK 00 1 7

The B flag is set to 1 before the status register is pushed onto the stack, and then

is cleared to 0. Hence, an interrupt service routine may examine the contents of

the stack to determine if the interrupt was caused by a BRK instruction. The

built-in interrupt service routine pushes the three user registers (.A, .X, and.Y in

that order) onto the stack, checks for a break instruction, and indirectly jumps

through the BRK instruction vector at $0316-$0317 when a BRK is executed.

Trapping a BRK instruction is accomplished most easily by altering this vector to

point to your routine.

It should be noted that the interrupt caused by a BRK instruction can NOT be

masked by setting the interrupt disable (I) flag.

Example: This example alters the BRK instruction vector. Before executing it, check the

default contents of $0316-$0317 with the M (Memory) command. The low byte

ofthe default address for BRK processing is located in $0316, and the high byte in

$0317. If this address is not $F44C, replace the $F44C in the program with it.

. 2000 A9 OB LDA #$0B Load the low byte of the address of

new BRK processor.

. 2002 8D 16 03 STA $0316 Store in vector.

. 2005 A9 20 LDA #$20 Load the high byte of the address of

new BRK processor.

. 2007 8D 17 03 STA $0317 Store in vector.

252 Machine Language on the Commodore Plus/4

. SOOA 00 BRK Execute a BRK instruction (and stop

processing).

. 200B EE 19 FF INC $FF19 Increment the border color.

. SOOE 4C 4C F4 JMP $F44C Then jump to normal BRK

processor.

After you execute this program (by typing G 2000), the execution of a BRK

instruction will increment the border color before proceeding normally. When

you are finished with this example, reset the computer by typing G FFF6 so as to

restore the BRK instruction vector to its default value.

BVC—Branch. If Overflow Flag Is Clear

This instruction examines the current status of the overflow flag bit. If it is cleared

to 0, the branch occurs. If it is 1, the branch does not occur, and execution

continues with the following instruction.

Operation: Branch onV-0 Flags Affected: None

Addressing Mode Syntax Opcode Bytes _Cycles

Relative BVC $hhhh 50 2 2*

* Add 1 cycle when the branch is taken. Add 2 cycles when it is taken across a page boundary.

Example: This program adds the contents of $2100 to the contents of $2101 and stores the

result in $2102. If a two's complement overflow occurs, the border color is

incremented.

2000

S001

2004

2007

200A

200C

200F

18

AD

6D

8D

50

EE

00

00

01

02

03

19

21

21

21

FF

CLC

LDA

ADC

STA

BVC

IWC

BRK

$2100

$2101

$2102

I200F

$FF19

Prepare for addition.

Get the first value.

Add the second value.

Store the result.

Branch if no overflow occurred.

Increment the border color.

Stop processing.

Examine and change the contents of $2100-$2102 to experiment with two's

complement overflows.

BVS—Branch If Overflow Flag Is Set

This instruction examines the current status of the overflow flag bit. If it is set to

1, the branch occurs. If it is 0, the branch does not occur, and execution continues

with the following instruction.

The 6503 Microprocessor 253

Operation: Branch onV-1 Flags Affected: None

Addressing Mode Syntax Opcode Bytes Cycles

Relative BVS $hhhh 70 2 2*

* Add 1 cycle when the branch is taken. Add 2 cycles when it is taken across a page boundary.

Example: This example uses the BIT instruction to transfer the status of bit 6 of the low byte

of the jiffy clock to the overflow flag. First, the program waits until this bit is

clear, then until it is set. An increment of the border color signals the end of the

wait.

. 2000 24 A5 BIT $A5 Transfer bit 6 of jiffy clock to over

flow flag.

. 2002 70 PC BVS $2000 Continue waiting if the bit is set.

. 2004 EE 19 PF LKTC $FF19 Increment the border color.

. 2007 24 A5 BIT $A5 Transfer bit 6 of jiffy clock to over

flow flag.

. 2009 50 PC BVC $2007 Continue waiting if the bit is clear.

. 200B EE 19 PP IUC $PP19 Increment the border color.

. 200E 00 BRK Stop processing.

CLC—Clear the Carry Flag

The carry flag is cleared to 0.

Operation: 0 — C Flags Affected: C

Addressing Mode Syntax Opcode Bytes Cycles

Implied CLC 18 1 2

Example: This program adds the contents of $2100 to the contents of $2101 and stores the

result in $2102. Because the ADC instruction adds the value of the carry to the

sum of the accumulator and the operand, the CLC instruction is used to clear the

carry flag before the addition. This ensures that the result is exactly the first value

plus the second value.

. 2000 18 CLC Clear the carry flag to prepare to add.

. 2001 AD 00 21 LDA $2100 Get the first value.

. 2004 6D 01 21 ADC $2101 Add the second value.

. 2007 8D 02 21 STA $2102 Store the result.

. 200A 00 BRK Stop processing.

Use the M (Memory) command to examine and change the contents of

$2100-$2102.

254 Machine Language on the Commodore Plus/4

OLD—Clear Decimal Mode

The processor is put in normal hexadecimal mode.

Operation: 0-+ D Flags Affected: D

Addressing Mode Syntax Opcode Bytes Cycles

Implied CLD D8 1 2

See the section on decimal mode.

Example: This program places the processor into decimal mode and adds the contents of

$2100 and $2101. The result is placed in $2102. Decimal mode is terminated using

the CLD instruction.

. 2000 P8 SED Put the processor into decimal mode.

. 2001 18 CLC Prepare to add.

. 2002 AD 00 SI LDA $2100 Get the first decimal value.

. 2005 6D 01 21 ADC $2101 Add the second decimal value.

. 2008 8D 02 21 STA $2102 Store the result.

. 200B D8 CLD Exit decimal mode.

. 200C 00 BRK Stop processing.

Use the M (Memory) command to examine and change the contents of

$2100-$2102 to experiment with decimal mode addition.

CLI—Clear Interrupt Disable Flag

The interrupt disable flag is cleared, which allows interrupts to occur.

Operation: 0 -> / Flags Affected: I

Addressing Mode Syntax Opcode Bytes Cycles

Implied CLI 58 1 2

Example: This example alters the IRQ vector. Before executing it, check the default

contents of $0314-$0315 with the M (Memory) command. The low byte of the

default address for IRQ processing is located in $0314 and the high byte in $0315.

If this address is not $CE0E, replace the $CE0E in the program with it.

. 2000 78 SEI Disables the interrupts.

The 6502 Microprocessor 235

. 2001 A9 OD LDA #$0D Get the low byte of the address of the

new IRQ processor.

. 2003 8D 14 03 STA $0314 Store in the vector.

. 2006 A9 20 LDA #$20 Get the high byte of the address of

the new IRQ processor.

. 2008 8D 15 03 STA $0315 Store in the vector.

. 200B 58 CLI Reenable the interrupts.

. 200C 00 BRK Stop processing.

. 200D EE 19 PP INC $PF19 Increment the border color.

. 2010 40 OE CE JMP $CE0E Jump to normal IRQ processing.

After you execute this program (by typing G 2000), the processing of an

interrupt increments the border color before proceeding normally. When you are

finished with this example, reset the computer by typing G FFF6 so as to restore

the IRQ vector to its default value.

CLV—Clear Overflow Flag

The overflow flag is cleared to 0.

Operation: 0 — V Flags Affected: V

Addressing Mode Syntax Opcode Bytes Cycles

Implied CLV B8 1 2

Example: This program uses the overflow flag to perform an unconditional branch. Such a

branch may be used instead of ajump instruction when code must be relocatable.

sooo

S001

2003

2004

2007

B8

50

00

EE

00

01

19

CLV

BVC

BRK

PF IUC

BRK

$2004

j$FF19

Clear the overflow flag.

This branch is always taken.

This is never executed.

Increment the border color.

Stop processing.

Unless a JMP or branch instruction elsewhere starts processing at $2001, the

branch there is unconditional (always taken).

CMP—CMP Memory with. Accumulator

The value currently in the accumulator is compared with the specified operand

and the appropriate flags are set.

Operation: A - M

Addressing Mode

Immediate

Zero page

Zero page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

Syntax

CMP #$hh

CMP $hh

CMP $hh,X

CMP $hhhh

CMP $hhhh,X

CMP $hhhh,Y

CMP ($hh,X)

CMP ($hh),Y

* Add 1 when a page boundary is crossed.

F/a^ Affected: N, Z, C

Opcode

C9

C5

D5

CD

DD

D9

Cl

Dl

.Bytes

2

2

2

3

3

3

2

2

Cycles

2

3

4

4

4*

4*

6

5*

The value in memory is subtracted from the value in the accumulator, but

neither value is altered. The following table shows the effect on each of the flags.

The N flag should be used when a two's complement compare is required (e.g.,

$FF is minus 1 and less than $01). The C flag should be used when an unsigned

compare is required (e.g., $FF is 255 and greater than $01).

Condition NFlag ZFlag C Flag

A < memory

A = memory

A > memory

1

0

0

0

1

0

0

1

1

Example: In this program, the CMP instruction is used to compare a value in the accumula

tor with the current raster line (register $FF1D). When a match is found, the

background color is changed. The routine is executed 256 times by using the X

register to count.

2000 A2 00

S002 A9 30

LDX #$00

LDA #$30

. 2004 CD ID FP CMP $FF1D

. 2007 DO FB BETE $2004

. 2009 A9 70 LDA #$70

. 200B 8D 15 FF STA $FF15

. 200E A9 50 LDA #$50

. 2010 CD ID FF CMP $FF1D

. 2013 DO FB BNE $2010

Start the counter at zero.

Set the accumulator to the upper

raster value desired.

Compare with current raster line.

Go back if it is not equal.

Get the value for the color black.

Store it in the background color

register.

Set the accumulator to the lower

raster value desired.

Compare with current raster line.

Go back if it is not equal.

The 6502 Microprocessor 257

. 2018

. 2019

. 201B

EE 15 FF IM3 $FF15

CA

DO E7

00

DEX

BITE 12002

BRK

Increment the background color to

white.

Decrement the counter.

If not zero, do it again.

Stop processing.

The values in $2003 and $200F may be changed to allow experimentation with

the raster line values.

CPX—Compare Memory with. X Register

The value currently in the X register is compared with the specified operand and

the appropriate flags are set.

Operation: X - M Flags Affected: N, Z, C

Addressing Mode Syntax Opcode Bytes Cycles

Immediate CPX#$hh EO 2 2

Zero page CPX $hh E4 2 3

Absolute CPX $hhhh EC 3 4

The value in memory is subtracted from the value in the X register, but neither

value is altered. The following table shows the effect on each of the flags. The N

flag should be used when a two's complement compare is required (e.g., $FF is

minus 1 and less than $01). The C flag should be used when an unsigned compare

is required (e.g., $FF is 255 and greater than $01).

Condition N Flag Z Flag C Flag

X < memory 1 0 0

X = memory Oil

X> memory 0 0 1

Example: This program copies the contents of $2100-21OF to $2110-$211F. The X register

is initialized to $10 and incremented until it reaches $1F. The CPX instruction is

used to determine this.

. 2000 A2 10 LDX #$10 Initialize X to $10.

. 2002 BD FO 20 LDA $20F0,X Get the value in originating location.

. 2005 9D 00 21 STA $2100,X Store the value in destination

location.

288

2008

S009

200B

200D

E8

E0

90

00

20

P5

INX

CPX

BCC

' BRK

#$20

$2002

Increment .X by 1.

Compare .X to $20.

If .X is less than $20, go back.

Stop processing.

Use the M (Memory) command to examine and change the values in

$2100-$211F.

CFY—Compare Memory with. Y Register

The value currently in the Y register is compared with the specified operand and

the appropriate flags are set.

Operation: Y-M Flags Affected: N, Z, C

Addressing Mode Syntax Opcode Bytes Cycles

Immediate

Zero page

Absolute

CPY #$hh

CPY $hh

CPY $hhhh

CO

C4

CC

2

2

3

2

3

4

The value in memory is subtracted from the value in the Y register, but neither

value is altered. The following table shows the effect on each of the flags. The N

flag should be used when a two's complement compare is required (e.g., $FF is

minus 1 and less than $01). The C flag should be used when an unsigned compare

is required (e.g., $FF is 255 and greater than $01).

Condition N Flag Z Flag C Flag

Y< memory 1 0 0

Y = memory Oil

Y> memory 0 0 1

Example: This program copies the contents of $2100-$21OF to $2110-$211F. The Y register

is used as an indirect index and an index. The CPY instruction is used to

determine when to stop copying.

. 2000 A9 00 LDA #$00 Load .A with zero.

. 2002 A8 TAY Load .Y with zero.

. 2003 85 D8 STA $D8 Store zero in the low indirect address.

. 2005 A9 21 LDA #$21 Load .A with $21.

. 2007 85 D9 STA $D9 Store $21 in the high indirect address.

2009

SOOB

SOOE

SOOF

SOU

S013

Bl

99

08

CO

90

00

D8

10 SI

10

P6

LDA

STA

INY

CFY

BCC

BRK

($D8),Y

$2110,Y

#♦10

#2009

The 6502 Microprocessor 259

Get the contents of the originating

location.

Store in the destination location.

Increment .Y by 1.

Compare .Y with $10.

If .Y is less than $10, go back.

Stop processing.

Use the M (Memory) command to examine and change the values in

$2100-$211F.

DEC—Decrement Memory "by 1

The value currently in the operand is decremented by 1.

Operation: M - 1 —* M Flags Affected: N, Z

Addressing Mode Syntax Opcode Bytes Cycles

Zero page DEC $hh C6 2 5

Zero page, X DEC $hh,X D6 2 6

Absolute DEC$hhhh CE 3 6

Absolute, X DEC $hhhh,X DE 3 7

The value stored in the operand is decreased by 1. If the result is negative, the N

flag is set to 1; otherwise it is cleared to 0. If the result is zero, the Z flag is set to 1;

otherwise it is cleared to 0. It should be noted that the carry flag is NOT affected.

That is, a decrement from $00 to $FF does NOT result in the carry flag being

cleared.

Example: This program searches the operating system ROM for the last occurrence of an

$EA (the opcode for a NOP). Indirect indexed addressing is used, and the DEC

instruction updates the indirect address.

. 2000 A9 00 LDA #$00 Load .A with a zero.

. 2002 85 D8 STA $D8 Store zero in the low byte of indirect

address.

. 2004 A8 TAY Store zero in .Y.

. 2005 A9 FF LDA #$FF Load .A with $FF.

. 2007 85 D9 STA $D9 Store $FF in the high byte of indirect

address.

. 2009 A9 EA LDA #$EA .A is the value to look for.

. 200B Dl D8 CMP ($D8),Y Examine the current location.

260 Machine Language on the Commodore Plus/4

. SOOD FO 08 BEQ $8017 If the desired value is found, quit.

. SOOP C6 D8 DEC $D8 Decrement the low byte of the

indirect address by 1.

.2011 DO F8 BITE $200B If not zero, go back.

. 2013 C6 D9 DEC $D9 When the low byte is zero, decrement

the high byte.

. 2015 DO F4 BITE $200B If not zero, go back.

. 2017 00 BRK Stop processing.

The address of the last occurrence of an $EA is stored in $D8-$D9 following

the execution of this program.

DEX—Decrement the X Register by 1

The value currently in the X register is decremented by 1.

Operation: X - 1 — X Flags Affected: N, Z

Addressing Mode Syntax Opcode Bytes Cycles

Implied DEX CA 1 2

The value stored in the X register is decreased by 1. If the result is negative, the

N flag is set to 1; otherwise it is cleared to 0. If the result is zero, the Z flag is set to

1; otherwise it is cleared to 0.

Example: This program copies contents of zero page into $2100-$21FF. The X register is

used as the index. The DEX instruction is used to update the index value.

. 2000 A2 00 LDX #$00 Initialize .X to zero.

. 2002 B5 00 LDA $00,X Get a value from zero page.

. 2004 9D 00 21 STA $2100,X Store the value in $2100-$2IFF.

. 2007 CA DEX Decrement the index by 1.

. 2008 DO F8 BWE $2002 If not equal to zero, go back.

. 200A 00 BRK Stop processing.

The operating system uses many zero page locations, so using an M (Memory)

command to examine zero page from the monitor may not reveal the contents of

zero page while a program is executing. A routine similar to the preceding one can

be used in a program to transfer the contents of zero page to a safe location prior

to returning to the monitor.

The 6502 Microprocessor

DEY—Decrement the Y Register by 1

The value currently in the Y register is decremented by 1.

861

Operation: Y- 1 -» Y

Addressing Mode Syntax

Flags Affected: N, Z

Opcode Bytes Cycles

Implied DEY 88 1

Example:

The value stored in the Y register is decreased by 1. If the result is negative, the

N flag is set to 1; otherwise it is cleared to 0. If the result is zero, the Z flag is set to

1; otherwise it is cleared to 0.

In this program the contents of $2100-$21FF are copied onto the screen at

$0C00-$0CFF. The Y register is used for indirect indexed addressing, and the

DEY instruction updates the index value.

S000 A9 00

2002 85 D8

LDA #$00

STA ID8

. 2004 85 DA STA $DA

. 2006 A8

• 2007 A9 21

. 2009 85 D9

. 200B A9 OC

. 200D 85 DB

. 200F Bl D8

. 2011 91 DA

. 2013 88

. 2014 DO P9

. 2016 00

TAY

LDA #$21

STA $D9

LDA #$0C

STA $DB

LDA ($D8),Y

STA ($DA),Y

DEY

BITE $200F

BRK

Load .A with zero.

Store zero in the low byte of

origination address.

Store zero in the low byte of

destination address.

Initialize .Y at zero.

Load .A with $21.

Store $21 in the high byte of

origination address.

Load .A with $0C.

Store $0C in the high byte of

destination address.

Get the value of the originating byte.

Store in the destination byte.

Decrement .Y by 1.

If not zero, continue.

Stop processing.

Use the M (Memory) command to put the desired screen code values in

$2100-$21FF (see Appendix E for screen codes).

E0R—Exclusive-OR Memory with. Accumulator

The value currently in the accumulator is logically exclusive-ORed to the speci

fied operand, and the result is placed in the accumulator.

Operation: A^-M -^

Addressing Mode

Immediate

Zero page

Zero page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

A

Syntax

EOR #$hh

EOR $hh

EOR $hh,X

EOR Shhhh

EOR $hhhh,X

EOR $hhhh,Y

EOR ($hh,X)

EOR ($hh),Y

Flags Affected: N, Z

Opcode

49

45

55

4D

5D

59

41

51

Bytes

2

2

2

3

3

3

2

2

Cycles

2

3

4

4

4*

4*

6

5*

* Add 1 when a page boundary is crossed.

Those bits that are set to 1 in the value in the accumulator or set to 1 in the

operand, but not both, are set to 1 in the result. Bits that are cleared to 0 in both

values or set to 1 in both values are cleared to 0 in the result. If the result has the

high bit set to 1, the N flag is set to 1; otherwise it is cleared to 0. If the result is

zero, the Z bit is set to 1; otherwise it is cleared to 0.

Example: This program flashes the upper left character on the screen by alternating

between the character residing there and its reverse. The EOR instruction alter

nately sets and clears the high bit to produce this result.

2000 AS 00 LDX #$00

SOOS AD 00 OC LDA $0000

S005 49 80 EOR #$80

2007 8D 00 OC STA $0000

S00A A5 A5 LDA $A5

200C 29 02

200E DO FA

2010 A5 A5

2012 29 02

2014 PO PA

2016 CA

2017 DO E9

2019 00

ATTO #$02

BETE $200A

LDA $A5

A1H) #$02

BEQ $2010

DEX

BITE $2002

BRK

.X counts 256 flashes.

Get the character in the upper left

corner.

Toggle the high bit.

Put the new character in the upper

left corner.

Now wait. Get the low byte of jiffy

clock.

Look at bit 1.

Wait until it is off.

Get the low byte of jiffy clock.

Look at bit 1.

Wait until it is on.

Decrement the flash counter.

If not done, continue.

Stop processing.

The 6502 Microprocessor 263

The speed of the flashing can be changed by changing which bit of the jiffy

clock is examined at $200C and $2012.

INC—Increment Memory "by 1

The value currently in the operand is incremented by 1.

Operation: M + 1

Addressing Mode

Zero page

Zero page, X

Absolute

Absolute, X

- M

Syntax

INC $hh

INC $hh,X

INC $hhhh

INC $hhhh,X

Op

E6

F6

EE

FE

Flags Affected: N, Z

>de Bytes Cycles

2

2

3

3

5

6

6

7

The value stored in the operand is increased by 1. If the result is negative, the N

flag is set to 1; otherwise it is cleared to 0. If the result is zero, the Z flag is set to 1;

otherwise it is cleared to 0. It should be noted that the carry flag is NOT affected.

That is, an increment from $FF to $00 does NOT result in the carry flag being set.

Example: The upper left screen location is cycled through all of the available screen codes.

The INC instruction is used to update the character.

2000 A2 00 LDX #$00

2002 EE 00 OC INC #0000

2005 A5 A5 LDA $A5

2007 29 02

2009 DO FA

200B A5 A5

200D 29 02

200P FO FA

2011 CA

2012 DO EE

2014 00

AND #102

BNE 12005

LDA $A5

AND #$02

BEQ I200B

DEX

BNE $2002

BRK

.X counts the 256 screen codes.

Increment the upper left screen code

by 1.

Now wait. Get the value in the jiffy

clock.

Look at bit 1.

Wait until it is off.

Get the value in the jiffy clock.

Look at bit 1.

Wait until it is on.

Decrement the counter.

If not done, continue.

Stop processing.

The speed of the updating can be changed by changing which bit of the jiffy

clock is examined at $2007 and $200D.

264 Machine Language on the Commodore Plus/4

INX—Increment the X Register by 1

The value currently in the X register is incremented by 1.

Operation: X + / -* X

Addressing Mode Syntax

Flags Affected: N, Z

Opcode Bytes Cycles

Implied INX E8 1

The value stored in the X register is increased by 1. If the result is negative, the

N flag is set to 1; otherwise it is cleared to 0. If the result is zero, the Z flag is set to

1; otherwise it is cleared to 0.

Example: This program counts the number of times the value SEA (the opcode for a NOP)

occurs in the operating system ROM. The X register is used to count and the INX

instruction is used to update it.

. 2000

. 2002

. 2004

. 2005

. 2006

. 2008

. 200A

. 200C

. 200E

. 2010

. 2011

. 2013

. 2015

. 2017

. 2019

A9

85

AA

A8

A9

85

Bl

C9

DO

E8

E6

DO

E6

DO

00

00

D8

80

D9

D8

EA

01

D8

P5

D9

PI

LDA

STA

TAX

TAY

LDA

STA

LDA

CMP

BNE

INX

INC

BNE

INC

BNE

BRK

#$oo

$D8

#$80

$D9

($D8),Y

#$EA

$2011

$D8

$200A

$D9

$200A

Load .A with zero.

Store zero in the low byte of the

address.

Store zero in .X, the count register.

Store zero in .Y, the index register.

Load .A with $80.

Store $80 in the high byte of the

address.

Get the value at the current address.

Compare with $EA.

If not equal, go on.

Increment the count register.

Increment the low byte of the

address.

If not zero, go back for the next byte

Increment the high byte of the

address.

If not zero, go back for the next byte

Stop processing.

When the BRK instruction is executed, the count in the X register is displayed.

The 6502 Microprocessor 268

INY—Increment the Y Register by 1

The value currently in the Y register is incremented by 1.

Operation: Y+ 1 - Y Flags Affected: N, Z

Addressing Mode Syntax Opcode Bytes Cycles

Implied INY C8 J 2

The value stored in the Y register is increased by 1. If the result is negative, the

N flag is set to 1; otherwise it is cleared to 0. If the result is zero, the Z flag is set to

1; otherwise it is cleared to 0.

Example: In this example, the first byte in $8000-$80FF containing a value of $EA is

located. The Y register is used as the index, and the INY instruction updates it.

. 2000 A0 00 LDY #$00 Initialize .Y to zero.

. 2002 A9 EA LDA #$EA Load .A with the value to look for.

. 2004 D9 00 80 CMP $8000,Y Compare with the current location.

. 2007 FO 03 BEQ $2000 If equal, quit.

. 2009 C8 INY Update the index register.

. 200A DO F8 BNE $2004 If there are more locations to search,

go back.

. 200C 00 BRK Stop processing.

When the BRK instruction is executed, the value of the Y register when an $EA

was found (or a zero if none was found) is displayed.

JMP—Jump to a New Location

The address specified in the operand is transferred to the program counter, and

processing continues with the instruction located at that address.

Operation:

Addressing

Absolute

Indirect

(FC +

Mode

1) - PCL

Syntax

JMP Shhhh

JMP (Shhhh)

Flags Affected:

Opcode Bytes

4C 3

6C 3

None

Cycles

3

5

266 Machine Language on the Commodore Plus/4

Example:

Without affecting any of the flags, the processing control is passed to the

specified address. This is the only instruction that has an indirect addressing

mode. In this mode, the value at the specified address is used as the low byte ofthe

destination address, and the value stored in the next location is used as the high

byte of the destination address.

In this program the background color is cycled through every possible value. The

JMP instruction is used tojump to the reset routine. The reset routine restores the

background color to its default value (and returns to BASIC).

2000 A9 00 LDA #$00

2002 8D 15 PF STA $FF15

2005 EE 15 FF IMJ $FF15

2008 FO OE

200A A5 A5

200C 29 02

200E DO FA

2010 A5 A5

2012 29 02

2014 FO FA

2016 DO ED

BEQ $2018

LDA $A5

AND #$02

BETE $200A

LDA $A5

AKTD #$02

BEQ $2010

BETE $2005

2018 4C F6 FF JMP $FFF6

Load .A with a zero.

Store zero in the background color

register.

Increment the background color

register.

If it has cycled around to zero, quit.

Now wait. Load the value in the jiffy

clock.

Look at bit 1.

Wait until it is off.

Load the value of the jiffy clock.

Look at bit 1.

Wait until it is on.

Done waiting, go back.

Transfer control to the reset

routine.

JSR—Jump to Subroutine

The current value of the program counter (plus 2) is pushed onto the stack for use

as the return address. The address specified with the instruction is transferred to

the program counter, and processing continues with the instruction located at

that address.

Operation: PC + 2\

, (PC+1)-PCL

(PC+ 2)^ PCH

Addressing Mode Syntax

Flags Affected: None

Opcode Bytes Cycles

Absolute JSR $hhhh 20

The processor saves the return address on the stack. The RTS instruction pulls

these bytes off the stack. A JSR instruction should have a corresponding RTS.

The 6508 Microprocessor 267

None of the flags is affected. Hence, they may be used to transfer information

between the main program and the subroutine.

Example: This program cycles the two upper left character locations on the screen through

all possible values. They are changed alternately, with a brief wait in between. The

wait routine is a subroutine and is called using the JSR instruction.

. 2000 AS 00 LDX #$00

. 2002 EE 00 OC INC $0000

. 2005 20 12 20 JSR $2012

. 2008 EE 01 OC IUC $0001

. 200B 20 12 20 JSR $2012

. 200E CA DEX

. 200P DO Fl BITE $2002

. 2011 00 BRK

. 2012 A5 A5 LDA $A5

2014 29 08

2016 DO FA

2018 A5 A5

201A 29 08

201C FO FA

201E 60

AJKTD #$08

BITE $2012

LDA $A5

AKTD #$08

BEQ $2018

RTS

.X counts all the possible values.

Next character for the first location.

Call the wait subroutine.

Next character for the second

location.

Call the wait subroutine.

Decrement the counter.

If not done, go back.

Stop processing.

Start of subroutine. Load the jiffy

clock.

Look at bit 3.

Wait until it is off.

Load the value of the jiffy clock.

Look at bit 3.

Wait until it is on.

Return from the subroutine.

LDA—LoadAccumulator with Value from Memory

The value currently in the location specified by the operand is placed in the

accumulator.

Operation: M— A

Addressing Mode Syntax

Flags Affected: N, Z

Opcode Bytes Cycles

Immediate

Zero page

Zero page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

LDA #$hh

LDA $hh

LDA $hh,X

LDA $hhhh

LDA $hhhh,X

LDA $hhhh,Y

LDA ($hh,X)

LDA ($hh),Y

A9

A5

B5

AD

BD

B9

Al

Bl

2

2

2

3

3

3

2

2

2

3

4

4

4*

4*

6

5*

* Add 1 when a page boundary is crossed.

368 Machine Language on the Commodore Plus/4

If the value transferred is negative, the N flag is set to 1; otherwise it is cleared to

0. If the value transferred is zero, the Z flag is set to 1; otherwise it is cleared to 0.

The value in the operand is not altered.

Example: The characters on the top of the line of the screen are copied to the second line of

the screen. Each value is transferred by loading it into the accumulator with the

LDA instruction and storing it to the destination.

. 2000 AS 27 LDX #$27 .X indexes the line.

. 2002 BD 00 OC LDA $0C00,X Load the accumulator with the next

character.

. 2005 9D 28 OC STA $0C28,X Store on the second line.

. 2008 CA DEX Decrement the index register.

. 2009 10 F7 BPL $2002 If there is more to do, go back.

. 200B 00 BRK Stop processing.

If the BRK instruction causes the screen to scroll, the result of the program is

not seen. To avoid this, clear the screen before you execute the program.

LDX—LoadX Register with Value from Memory

The value currently in the location specified by the operand is placed in the X

register.

Operation: M— X Flags Affected: N, Z

Addressing Mode Syntax Opcode Bytes Cycles

Immediate

Zero page

Zero page, Y

Absolute

Absolute, Y

LDX #$hh

LDX $hh

LDX $hh,Y

LDX $hhhh

LDX $hhhh,Y

A2

A6

B6

AE

BE

2

2

2

3

3

2

3

4

4

4*

* Add 1 when a page boundary is crossed.

If the value transferred is negative, the N flag is set to 1; otherwise it is cleared to

0. If the value transferred is zero, the Z flag is set to 1; otherwise it is cleared to 0.

The value in the operand is not altered.

Example: This program copies each character on the first line of the screen one location to

the right. The X register is used as the index and initialized using the LDX

instruction.

The 6502 Microprocessor 869

. 2000 A2 27 LDX #$27 Initialize .X for indexing.

. 2002 BD 00 OC LDA $0C00,X Get the next character.

. 2005 9D 01 OC STA #0C01,X Store 1 byte to the right.

. 2008 CA DEX Decrement the index register.

. 2009 10 F7 BPL $2002 If not done, go back.

. 200B 00 BRK Stop processing.

If the screen scrolls upon execution of the BRK instruction, the effect of the

program will not be seen. To avoid this, clear the screen before executing the
program.

LDY—LoadY Register with Value from Memory

The value currently in the location specified by the operand is placed in the Y

register.

Operation: M-+ Y Flags Affected: N, Z

Addressing Mode Syntax Opcode Bytes Cycles

Immediate

Zero page

Zero page,X

Absolute

Absolute, X

LDY #$hh

LDY $hh

LDY $hh,X

LDY $hhhh

LDY $hhhh,X

AO

A4

B4

AC

BC

2

2

2

3

3

2

3

4

4

4*

* Add 1 when a page boundary is crossed.

If the value transferred is negative, the N flag is set to 1; otherwise it is cleared to

0. If the value transferred is zero, the Z flag is set to 1; otherwise it is cleared to 0.

The value in the operand is not altered.

Example: This program copies the characters on the first line of the screen to the second.

The Y register is used as the index and initialized with the LDY instruction.

. 2000 A9 OC LDA #$0C Load .A with the high byte of the

address.

. 2002 85 D9 STA $D9 Store in the high byte of the

originating address.

. 2004 85 DB STA $DB Store in the high byte of the

destination address.

. 2006 A9 00 LDA #$00 Load .A with the low byte of the first

line address.

270 Machine Language on the Commodore Plus/4

. 2008 85 D8 STA $D8 Store in the low byte of the

originating address.

. SOOA A9 28 LDA #$28 Load .A with the low byte of the

second line address.

. 200C 85 DA STA $DA Store in the low byte of the

destination address.

. 200E AO 27 LDY #$27 Initialize .Y to move one line.

. 2010 Bl D8 LDA ($D8),Y Get the character from the first line.

. 2012 91 DA STA ($DA),Y Put on the second line.

. 2014 88 DEY Decrement the index register.

. 2015 10 F9 BPL $2010 If not done, go on.

. 2017 00 BRK Stop processing.

If the screen scrolls upon execution of the BRK instruction, the effect of the

program will not be seen. To avoid this, clear the screen before executing the

program.

LSR—Shift Right One Bit

Each bit in the specified operand is shifted one bit to the right. The low bit is

shifted into the carry flag, and a 0 is shifted into the high bit.

Operation: 0 — [7 0]-+C Flags Affected: N, Z, C,

Addressing Mode Syntax Opcode Bytes Cycles

Accumulator

Zero page

Zero page, X

Absolute

Absolute, X

LSR

LSR $hh

LSR $hh,X

LSR $hhhh

LSR $hhhh,X

4A

46

56

4E

5E

1

2

2

3

3

2

5

6

6

7

Bit 0 of the operand is shifted into the carry flag. Bits 7 through 1 are shifted

into bits 6 through 0, respectively. Since a 0 is shifted into the high bit, the result

can never be negative. Hence, the N flag is always cleared to 0. If the result is zero,

the Z bit is set to 1; otherwise it is cleared to 0.

Example: This program counts the number of bits set to 1 in memory location $2100. The

LSR instruction is used to shift the bits one by one into the carry bit for testing.

. 2000 AO 07 LDY #$07 .Y counts the 8 bits.

. 2002 A2 00 LDX #$00 .X counts the number of bits set to 1.

. 2004 AD 00 21 LDA $2100 Get the byte to count.

. 2007 4A LSR Shift bit 0 into the carry.

The 6508 Microprocessor 271

.2008 90 01 BCC $200B If clear, skip the next instruction.

. S00A E8 INX Increment the count of bits set to 1.

. 200B 88 DEY Decrement the bit count.

. 200C 10 F9 BPL $2007 If not done, continue.

. 200E 00 BRK Stop processing.

The number of bits set to 1 is displayed in the X register when the BRK

instruction is executed.

WOP—ITo Operation

No operation is performed.

Operation: None Flags Affected: None

Addressing Mode Syntax Opcode Bytes Cycles

Implied NOP EA 1 2

The processor performs no operation. None of the flags are affected. This

instruction is generally used as a placeholder.

Example: In this program a loop executes until a certain memory location is zero. In this

case, a zero page location (the low byte of the jiffy clock) is used. A NOP

instruction is placed just after the LDA instruction. This leaves room for testing a

location not on zero page in a subsequent execution of the program.

sooo

2002

2003

2005

A5

EA

DO

00

A5

PB

LDA

HOP

BITE

BRK

#A5

#2000

ORA—OR Memory with Accumulator

The value currently in the accumulator is logically ORed with the specified

operand, and the result is placed in the accumulator.

Operation: Av M-+ A Flags Affected: N, Z

Addressing Mode Syntax Opcode Bytes Cycles

Immediate ORA#$hh 09 2 2

Zero page ORA $hh 05 2 3

Zero page, X ORA $hh,X 15 2 4

278 Machine Language on the Commodore Plus/4

Operation: Av M^ A Flags Affected: N, Z

Addressing Mode Syntax Opcode Bytes Cycles

Absolute ORAShhhh OD 3 4

Absolute, X ORA$hhhh,X ID 3 4*

Absolute, Y ORA $hhhh,Y 19 3 4*

(Indirect, X) ORA ($hh,X) 01 2 6

(Indirect), Y ORA ($hh),Y 11 2 5*

* Add 1 when a page boundary is crossed.

Those bits that are set to 1 in the value in the accumulator or set to 1 in the

operand, or both, are set to 1 in the result. Bits that are cleared to 0 in both values

are cleared to 0 in the result. If the result has the high bit set to 1, the N flag is set to

1; otherwise it is cleared to 0. If the result is zero, the Z bit is set to 1; otherwise it is

cleared to 0.

Example: The first 256 locations of color memory are set to multicolor $08. Then the ORA

instruction is used to place the graphics chip into multicolor mode. The program

waits for a key to be hit and then returns to normal mode.

2000

2002

S004

2007

2008

200A

200D

200F

2012

2015

2017

201A

201C

201P

AO

A9

99

88

DO

AD

09

8D

20

FO

AD

29

8D

00

00

08

00

FA

07

10

07

E4

FB

07

EF

07

08

FF

FF

FF

FF

FF

LDY

LDA

STA

DEY

BNE

LDA

0EA

STA

JSR

BEQ

LDA

AND

STA

BRK

##00

#$08

$0800,Y

$2004

$FF07

#$10

$FF07

$FFE4

$2012

$FF07

#$EF

$FF07

.Y indexes color memory.

.A is color to fill with.

Store color in the next color location.

Decrement the index register.

If not done, go on.

Get the current value of register 7.

Set bit 4 to 1 to turn on multicolor.

Store in register 7.

Look for a key hit.

If none, go back.

Get the current value of register 7.

Clear bit 4 to 0 to turn off multicolor.

Store in register 7.

Stop processing.

PHA—PushAccumulator onto ttie Stack

The value currently in the accumulator is pushed onto the stack.

Operation: A I . Flags Affected: None

Addressing Mode Syntax Opcode Bytes Cycles

Implied PHA 48_ 1 3

The 6502 Microprocessor 873

The value in the accumulator is stored in the location indicated by the stack

pointer, and the stack pointer is decremented.

Example: This program continuously changes the border color until a key is hit. The PHA

instruction is used to save the original color of the border on the stack for

restoration after the key hit.

2000 AD 19 FF LDA $FF19

2003 48 PHA

S004 20 OC 20 JSR $2000

2007 68 PLA

2008 8D 19 FF STA $FF19

200B 00 BRK

200C EE 19 FF INC $FF19

200F 20 E4 FF JSR $FFE4

2012 FO F8 BEQ $2000

2014 60 RTS

Get the current border color.

Save on the stack.

Execute the border color change

subroutine.

Retrieve the original border color.

Restore the original border color.

Stop processing.

Increment the border color.

Look for a key hit.

If no key, then go back.

Exit the subroutine.

PHP—Push Processor Status Register onto the Stack

The value currently in the processor status register is pushed onto the stack.

Operation: SR \

Addressing Mode Syntax

Flags Affected: None

Opcode Bytes Cycles

Implied PHP 08 1

The value in the processor status register is stored in the location indicated by

the stack pointer, and the stack pointer is decremented.

Example: This example shows BASIC preparing to return from a SYS command. The

value of the status register returned from the user routine is saved in $07F5.

. A7CF 08 PHP

. A7D0 8D P2 07 STA $07FS

. A7D3 8E F3 07 STX $07F3

. A7D6 8C F4 07 STY $07F4

. A7D9 68 PLA

Push the returned status onto the

stack.

Save the returned .A.

Save the returned .X.

Save the returned .Y.

Pull the returned status from the

stack.

274 Machine Language on the Commodore Plus/4

. A7DA 8D F5 07 STA $07F5 Save the returned status register.

. A7DD 60 RTS Return from SYS.

PLA—Pull Accumulator from the Stack

A value is pulled from the stack and placed in the accumulator.

Operation: A t

Addressing Mode Syntax

Flags Affected: N, Z

Opcode Bytes Cycles

Implied PLA 68 1

The stack pointer is incremented, and the value it points to is placed in the

accumulator.

Example: This program continuously changes the border color until a key is pressed. The

original color of the border is saved on the stack and retrieved using the PLA

instruction after a key is hit.

. SOOO AD 19 PF LDA $PF19

. 2003 48 PHA

. S004 SO OC SO JSR $SOOC

. 2007 68 PLA

. S008 8D 19 PP STA $FF19

. SOOB 00 BRK

. SOOC EE 19 PP IISTC $FF19

. SOOF SO E4 FF JSR $FFE4

. S013 FO F8 BEQ ISOOC

. S014 60 RTS

Get the current border color.

Save on the stack.

Execute the border color change

subroutine.

Retrieve the original border color

from the stack.

Restore the original border color.

Stop processing.

Increment the border color.

Look for a key hit.

If no key, then go back.

Exit the subroutine.

PLP—Pull Processor Status Register from the Stack

A value is pulled from the stack and placed in the processor status register.

Operation: SR \

Addressing Mode Syntax

Flags Affected: All

Opcode Bytes Cycles

Implied PLP 28 1

The 6502 Microprocessor 278

The stack pointer is incremented, and the value it points to is placed in the

processor status register.

Example: This example shows BASIC setting up for a SYS command. The value to send in

the status register is stored in S07F5.

. A7BE AD FS 07 LDA $07F5 Get the status register value from

memory.

. A7C1 48 PHA Push the value onto the stack.

. A7C2 AD F2 07 LDA $07F2 Set up .A.

. A7C5 AE F3 07 LDX $07F3 Set up .X.

. A7C8 AC F4 07 LDY $07F4 Set up .Y.

. A7CB 2B PLP Pull the status register from the

stack.

. A7CC 6C 14 00 JMP ($0014) Jump to the user routine.

R0L—Rotate Left One Bit

Each bit in the specified operand is rotated one bit to the left. The high bit is

rotated into the carry flag, and the carry flag is rotated into the low bit.

Operation: C*-[7

Addressing Mode

Accumulator

Zero page

Zero page, X

Absolute

Absolute, X

Syntax

ROL

ROL $hh

ROL $hh,X

ROLShhhh

ROL $hhhh,X

Flags Affected: N, Z, C

Opcode

2A

26

36

2E

3E

Bytes

1

2

2

3

3

Cycles

2

5

6

6

7

Bit 7 of the operand is rotated into the carry flag. Bits 6 through 0 are rotated

into bits 7 through 1, respectively. The carry flag is rotated into bit 0. If bit 7 ofthe

result is set to 1, the N flag is set to 1; otherwise it is cleared to 0. If the result is

zero, the Z bit is set to 1; otherwise it is cleared to 0.

Example: This program is a 4-byte shift left (or multiplication by 2). If an overflow occurs,

the border color is incremented. The ROL instruction is used to shift left and

transmit the information between bytes by means of the carry bit.

• 2000 OE 03 21 ASL $2103 Shift the low byte to the left.

. 2003 2E 02 21 ROL $2102 Rotate the next byte to the left.

. 2006 2E 01 21 ROL $2101 Rotate the next byte to the left.

376 Machine Language on the Commodore Plus/4

. 2009 SE 00 21 ROL $2100 Rotate the next byte to the left.

. 200C 90 03 BCC $2011 If no overflow, skip the next

instruction.

. 200E EE 19 FF IWC $FF19 Increment the border color.

. 2011 00 BRK Stop processing.

Use the M (Memory) command to examine and change the values in

$2100-52103.

ROR—Rotate Right One Bit

Each bit in the specified operand is rotated one bit to the right. The low bit is

rotated into the carry flag, and the carry flag is rotated into the high bit.

Operation: p [7

Addressing Mode

Accumulator

Zero page

Zero page, X

Absolute

Absolute, X

oj-c

Syntax

ROR

ROR $hh

ROR $hh,X

ROR $hhhh

ROR $hhhh,X

Flags Affected: N, Z, C

Opcode

6A

66

76

6E

7E

Bytes

1

2

2

3

3

Cycles

2

5

6

6

7

Bit 0 of the operand is rotated into the carry flag. Bits 7 through 1 are rotated

into bits 6 through 0, respectively. The carry flag is rotated into bit 7. If the high

bit of the result is set to 1, the N flag is set to 1; otherwise it is cleared to 0. If the

result is zero, the Z bit is set to 1; otherwise it is cleared to 0.

Example: This is a 4-byte shift right (division by 2). The ROR instruction is used to shift the

bits right and transmit information between bytes by means of the carry bit.

Shift the high byte to the right.

Rotate the next byte to the right.

Rotate the next byte to the right.

Rotate the next byte to the right.

Stop processing.

Use the M (Memory) command to examine and change the values in

$2100-$2103.

8000

2003

2006

2009

800C

4E

6E

6E

6E

00

00

01

02

03

21

21

21

21

LSR

ROR

ROR

ROR

BRK

$2100

$2101

$2102

$2103

The 6502 Microprocessor 277

RTI—Return from an Interrupt

The values of the SR and PC are pulled from the stack, and processing continues.

Flags Affected: All

Example:

Operation: SR t

PC\

PC+ 1^ PC

Addressing Mode Syntax

Implied RTI

Opcode Bytes Cycles

40 16

This instruction is used to end the processing of an interrupt. The status

register is restored from the stack. Because an interrupt can occur only when the I

flag is clear, this status register value will have the I flag cleared. The program

counter is also pulled from the stack and incremented, and processing continues

at that point. No other internal registers are affected. See the section on interrupts

for more information.

This example alters the IRQ vector. The normal interrupt processing is sus

pended. The substitute service routine simply increments the border color. The

program must be halted by pressing the reset button on the right side of the

computer.

2000 78

2001 A9 OP

SEI

LDA #$0F

2003 8D 14 03 STA $0314

2006 A9 20 LDA #$20

2008 8D 15 03 STA $0315

200B 58 CLI

200C 40 OC 20 JMP $2000

200P EE 19 PP IMTC $FP19

2012 68 PLA

2013

2014

2015

2016

2017

A8

68

AA

68

40

TAY

PLA

TAX

PLA

RTI

Disable maskable interrupts.

Get the low byte of the address of the

new IRQ processor.

Store in the vector.

Get the high byte of the address of

the new IRQ processor.

Store in the vector.

Reenable maskable interrupts.

Infinite loop.

Increment the border color.

Retrieve the value of .Y from the

stack.

Restore .Y to the preinterrupt value.

Retrieve the value of .X from the

stack.

Restore .X to the preinterrupt value.

Restore the value of .A from the stack.

Return from the interrupt.

278 Machine Language on the Commodore Plus/4

RTS—Return from a Subroutine

The value of the PC is pulled from the stack, and processing continues from that

point.

Operation: PC t

PC+1-+ PC

Addressing Mode Syntax

Flags Affected: None

Opcode Bytes Cycles

Implied RTS 60 1

Example:

This instruction is used to end the processing of a subroutine. The return

address is pulled from the stack, incremented, and stored in the PC. None of the

flags is affected. Hence, the flags may be used to communicate between the main

program and the subroutine.

This program cycles the two upper left character locations on the screen through

all possible values. They are changed alternately, with a brief wait between. The

wait routine is a subroutine that is terminated by an RTS instruction.

2000 A2 00 LDX #$00

2002 EE 00 OC INC $0000

2005 20 12 20 JSR $2012

2008 EE 01 OC INC $0001

200B 20 12 20 JSR $2012

200E CA DEX

200P DO PI BNE $2002

2011 00 BRK

2012 A5 A5 LDA $A5

2014 29 08

2016 DO PA

2018 A5 A5

201A 29 08

201C PO PA

201E 60

AUD #$08

BITE $2012

LDA $A5

AKTD #$08

BEQ $2018

RTS

.X counts all the possible values.

Next character for the first location.

Call the wait subroutine.

Next character for the second

location. j

Call the wait'subroutine.

Decrement the counter.

If not done, go back.

Stop processing.

Start of the subroutine. Load the jiffy

clock.

Look at bit 3.

Wait until it is off.

Load the value of the jiffy clock.

Look at bit 3.

Wait until it is on.

Return from the subroutine.

SBC—Subtract Memoiy from Accumulator with Carry

The operand is subtracted from the value in the accumulator minus the inverse of

the carry, and the result is placed in the accumulator. Normally the carry is set

(see SEC) prior to a subtraction. When in decimal mode, the Z flag is not valid;

check the accumulator for a zero result.

The 6502 Microprocessor 279

Operation: A - M -

Addressing Mode

~C-+A,C Flags Affected: N, Z, C, V

Syntax Opcode Bytes Cycles

Example:

Immediate

Zero page

Zero page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

SBC #$hh

SBC $hh

SBC $hh,X

SBC $hhhh

SBC $hhhh,X

SBC $hhhh,Y

SBC ($hh,X)

SBC ($hh),Y

E9

E5

F5

ED

FD

F9

El

Fl

2

2

2

3

3

3

2

2

2

3

4

4

4*

4*

6

5*

* Add 1 when a page boundary is crossed.

The microprocessor does two's complement subtraction by taking the one's

complement of the operand and performing an addition with carry. Thus, it is

necessary to set the carry prior to the subtraction to get a valid two's complement

result. The status of the carry following a subtraction reflects the result. If no

borrow was required, the carry is set to 1. If a borrow was required, the carry is

cleared to 0. This fact may be used to perform multiple precision subtractions. If

the result is negative, the N flag is set to 1; otherwise, it is cleared to 0. If the result

is zero, the Z flag is set to 1; otherwise it is cleared to 0. If the result exceeds+127 or

-128, the overflow flag is set to 1; otherwise it is cleared to 0.

Frequently, it is necessary to have a greater precision in calculations than the 256

possible values for a single byte. This is possible by treating a group of 2 or more

bytes as a single number. In this example, the 32-bit number stored at

$2104-$2107 (high byte to low byte) is subtracted from the 32-bit number at

$2100-52103, and the result stored in $2108-$210B.

. 2000 38

. 2001 A2 03

. S003 BD 00 SI

. 2006 PD 04 21

. 2009 9D 08 21

. 200C CA

• 200D 10 F4

. 200P 00

SEC

LDX #$03

LDA $2100,X

SBC $2104,X

STA $2108,X

DEX

BPL $2003

BRK

Set the carry prior to the first

subtraction.

.X will index through the 4 bytes.

Get a byte of the first number.

Subtract the corresponding byte from

the second number.

Store the result in the destination.

Decrement .X to point at the next

byte.

Continue processing until all 4 bytes

are done.

Stop processing.

Use the M (Memory) command to examine and modify the contents of

$2100-$2107 before executing the program (using G 2000). Then check the

contents of$2100-$210B after the program executes. The values in $2108-$210B

will be the difference of $2100-$2103 and $2104-$2107.

280 Machine Language on the Commodore Plus/4

The carry flag is used to transmit the borrow information between the bytes.

Before the first SBC, the carry is set, so the first result is correct. If a borrow is

produced (i.e., the carry is cleared), it is automatically accounted for in the next

byte because the program does not set the carry before performing the next SBC.

SEC—Set the Carry Flag

The carry flag is set to 1.

Operation: 1 — C Flags Affected: C

Addressing Mode Syntax Opcode Bytes Cycles

Implied SEC 38 1 2

Example: This program subtracts the contents of $2101 from the contents of $2100 and

stores the result in $2102. Since the SBC instruction adds the value of the carry to

the sum of the accumulator and the one's complement of the operand, the SEC

instruction is used to set the carry flag prior to the subtraction. This ensures that

the result is exactly the first value minus the second value.

2000

2001

2004

2007

200A

38

AD

ED

8D

00

00

01

02

21

21

21

SEC

LDA

SBC

STA

BRK

12100

12101

$2102

Set the carry flag to

subtract.

Get the first value.

Subtract the second

Store the result.

Stop processing.

prepare to

value.

Use the M (Memory) command to examine and change the contents of

$2100-$2102.

SED—Set Decimal Mode

The processor is put into decimal mode.

Operation: 1 — D Flags Affected: D

Addressing Mode Syntax Opcode Bytes Cycles

Implied SED F8 1 2

See the section on decimal mode.

The 6802 Microprocessor 281

Example: This program places the processor into decimal mode using the SED instruction

and adds the contents of $2100 and $2101. The result is placed in $2102, and

decimal mode is terminated.

2000

2001

2002

2005

2008

200B

200C

F8

18

AD

6D

8D

D8

00

00

01

02

21

21

21

SED

CLC

LDA

ADC

STA

OLD

BRK

$2100

$2101

$2102

Put the processor into decimal mode.

Prepare to add.

Get the first decimal value.

Add the second decimal value.

Store the result.

Exit decimal mode.

Stop processing.

Use the M (Memory) command to examine and change the contents of

$2100-$2102 to experiment with decimal mode addition.

SEI—Set Interrupt Disable Flag

The interrupt disable flag is set to prevent interrupts from occurring.

Operation: 1 -* I Flags Affected: I

Addressing Mode Syntax Opcode Bytes Cycles

Implied SEI 78 1 2

This instruction sets the I flag of the microprocessor status register. When this

flag is set, maskable interrupts do not occur. The interrupt caused by the BRK

instruction cannot be prevented in this way.

Example: This example alters the IRQ vector. Before executing it, check the default

contents of $0314-$0315 with the M (Memory) command. The low byte of the

default address for IRQ processing is located in $0314 and the high byte in $0315.

If this address is not $CE0E, replace the $CE0E in the program with it.

. 2000 78 SEI Disable maskable interrupts.

. 2001 A9 OD LDA #$0D Get the low byte of the address of the

new IRQ processor.

. 2003 8D 14 03 STA $0314 Store in the vector.

. 2006 A9 20 LDA #$20 Get the high byte of the address of

the new IRQ processor.

. 2008 8D 15 03 STA $0315 Store in the vector.

. 200B 58 CLI Reenable maskable interrupts.

383 Machine Language on the Commodore Plus/4

SOOC 00

200D EE

2010 4C

BRK

19 PP DTC &FF19

OE CE JMP $CEOE

Stop processing.

Increment the border color.

Jump to normal IRQ processing.

After you execute this program (by typing G 2000), the processing of an

interrupt increments the border color before proceeding normally. When you are

finished with this example, reset the computer by typing G FFF6 to restore the

IRQ vector to its default value.

STA—Store Value in Accumulator into Memory

The value currently in the accumulator is placed in the location specified by the

operand.

Example:

Operation: A — M

Addressing Mode

Zero page

Zero page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

Syntax

STA $hh

STA $hh,X

STA Shhhh

STA $hhhh,X

STA $hhhh,Y

STA ($hh,X)

STA ($hh),Y

Flags Affected: None

Opcode

85

95

8D

9D

99

81

91

Bytes

2

2

3

3

3

2

2

Cycles

3

4

4

5

5

6

6

The value of the accumulator is not altered, and the flags are not altered.

The characters on the top line of the screen are copied to the second line of the

screen. Each value is transferred by loading it into the accumulator and storing it

to the destination with the STA instruction.

. 2000 A2 27 LDX #$27 .X indexes the line.

. 2002 BD 00 OC LDA $0C00*X Load the accumulator with next

character.

. 2005 9D 28 OC STA $0C28,X

2008 CA

2009 10 P7

200B 00

DEX

BPL $2002

BRK

Store the value in the accumulator on

the second line.

Decrement the index register.

If there is more to do, go back.

Stop processing.

If executing the BRK instruction causes the screen to scroll, the result of the

program will not be seen. To avoid this, clear the screen before executing the

program.

The 6802 Microprocessor 283

STX—Store Value in X Register into Memory

The value currently in the X register is placed in the location specified by the
operand.

Operation: X - M Flags Affected: None

Addressing Mode Syntax Opcode Bytes Cycles

Zero page STX $hh 86 2 3

Zero page, Y STX $hh,Y 96 2 4

Absolute STX $hhhh 8E 3 4

The value of the X register is not altered, and the flags are not altered.

Example: This program counts the number of locations containing the value SEA (the

opcode for a NOP) in $DA00-$DAFF. The X register is used as the counter, and

the final count is stored in $2100 using the STX instruction.

. S000 AS 00 LDX #$00 Start .X count at zero.

. 2002 AO 00 LDY #$00 .Y is the index register.

. 2004 A9 EA LDA #$EA Load .A with the value to look for.

. 2006 D9 00 DA CMP $DA00,Y Check the next byte.

2009

200B

200C

200D

200F

2012

DO

E8

88

DO

8E

00

01

F7

00 21

BITE

IWX

DEY

BNE

STX

BRK

$2000

$2006

#2100

If not equal, then skip the next

instruction.

Increment the count.

Decrement the index register.

If not done, go back.

Store the final count at $2100.

Stop processing.

STY—Store Value in Y Register into Memory

The value currently in the Y register is placed in the location specified by the

operand.

Operation: Y'-+ M Flags Affected: None

Addressing Mode Syntax Opcode Bytes Cycles

Zero page STY $hh 84 2 3

Zero page, X STY $hh,X 94 2 4

Absolute STY $hhhh 8C 3 4

The value of the Y register is not altered, and the flags are not altered.

884 Machine Language on the Commodore Plus/4

Example: This program looks through $8000-$80FF until it finds an occurrence of the

value SEA (the opcode for a NOP). The location of the SEA is then stored at

$2100 using the STY instruction.

2000 A0 00

2002 A9 EA

2004 D9 00 80

2007 PO 03

2009 C8

200A DO P8

200C 8C 00 21

200P 00

LDY #$00

LDA #$EA

CMP I8000.Y

BEQ $2000

INY

BNE $2004

STY $2100

BRK

Start .Y at zero.

Load .A with the value to look for.

Compare with the next byte.

If equal, then done.

Increment to the next byte.

If there is more to search, then go on.

Store the location in $2100.

Stop processing.

TAX—Transfer Value in Accumulator into X Register

The value currently in the accumulator is placed in the X register.

Operation: A -* X

Addressing Mode Syntax

Flags Affected: N, Z

Opcode Bytes Cycles

Implied TAX AA 1

Example:

The value in the accumulator is not altered. If the value transferred is negative,

the N flag is set to 1; otherwise it is cleared to 0. If the value transferred is zero, the

Z flag is set to 1; otherwise it is cleared to 0.

In this program a value for the X register is gotten from a location specified by an

indirect index. Because the indirect indexed addressing mode is not available for

the LDX instruction, the value is loaded into the accumulator and then trans

ferred to the X register with the TAX instruction.

2000 A9 00

2002 85 D8

2004 A9 21

2006 85 D9

2008 AO 00

200A Bl D8

200C AA

200D BD 00 21

2010 8D 00 OC

2013 00

LDA #$00

STA $D8

LDA #$21

STA $D9

LDY #$00

LDA ($D8),Y

TAX

LDA $2100,X

STA $0000

BRK

Load .A with a zero.

Store in the low byte of the address.

Load .A with a $21.

Store in the high byte of the address.

Load .Y with a zero.

Get the index for the data retrieval.

Transfer the index to .X.

Load .A with the data byte.

Store on the screen.

Stop processing.

The 6803 Microprocessor 285

TAY—Transfer Value in Accumulator into Y Register

The value currently in the accumulator is placed in the Y register.

Operation: A -+ Y Flags Affected: N, Z

Addressing Mode Syntax Opcode Bytes Cycles

Implied TAY A8 1 2

The value in the accumulator is not altered. If the value transferred is negative,

the N flag is set to 1; otherwise it is cleared to 0. If the value transferred is zero, the

Z flag is set to 1; otherwise it is cleared to 0.

Example: In the following program a data byte must be multiplied by 2 to be used as an

index. Since shifts may not be performed on the Y register, the shift left is

performed in the accumulator, and the result is copied into the Y register using

the TAY instruction.

. 2000 AD 00 21 LDA $2100 Get the data byte.

. 2003 OA ASL Multiply by 2.

• 2004 A8 TAY Transfer the index value into .Y.

. 2005 B9 00 22 LDA $2200,Y Load the referenced data.

. 2008 00 BRK Stop processing.

TSX—Transfer Value in Stack Pointer into X Register

The value currently in the stack pointer is placed in the X register.

Operation: SP-* X Flags Affected: N, Z

Addressing Mode Syntax Opcode Bytes Cycles

Implied TSX BA 1 2

The value in the stack pointer is not altered. If the value transferred is negative,

the N flag is set to 1; otherwise it is cleared to 0. If the value transferred is zero, the

Z flag is set to 1; otherwise it is cleared to 0.

Example: This program illustrates the functioning of the stack. The TSX instruction is used

to copy the stack pointer into the X register. The value of the stack pointer when

the program begins executing is stored at $2100. Then the accumulator is pushed

onto the stack, and the resulting stack pointer is stored at $2101. The accumulator

is then pulled from the stack, and the new stack pointer is stored at $2102.

2000

2001

2004

2005

2006

2009

200A

200B

200E

BA

8E

48

BA

8E

68

BA

8E

00

00

01

02

21

21

21

TSX

STX

PHA

TSX

STX

PLA

TSX

STX

BRK

$2100

#2101

$2102

mmtmp^*mmB^0 ^mm^m' mm ^mr m^ M^pvw^a —

Transfer the initial SP value to .X

Store at $2100.

Push .A onto the

Transfer the new

Store at $2101.

Pull .A from the

Transfer the new

Store at $2101.

Stop processing.

stack.

SP value to .X.

stack.

SP value to .X.

The M (Memory) command may be used to examine $2100-$2102 following

the execution of this example program. See the section on the stack for more

information.

TXA.—Transfer Value in X Register into Acciunulator

The value currently in the X register is placed in the accumulator.

Example:

Operation: X -* A

Addressing Mode Syntax

Flags Affected: N, Z

Opcode Bytes Cycles

Implied TXA 8A 1

The value in the X register is not altered. If the value transferred is negative, the

N flag is set to 1; otherwise it is cleared to 0. If the value transferred is zero, the Z

flag is set to 1; otherwise it is cleared to 0.

In this example the bits set to 1 in the value of $2100 are counted. This is done in

the X register because the accumulator cannot be incremented. The value

obtained is then transferred to the accumulator using the TXA instruction.

. 2000

. 2002

. 2004

. 2007

. 2008

. 200A

. 200B

. 200C

. 200E

. 200P

A0

A2

AD

4A

90

E8

88

10

8A

00

07

00

00 21

01

F9

LDY

LDX

LDA

LSR

BCC

IWX

DEY

BPL

TXA

BRK

#$07

#$00

$2100

$200B

$2007

.Y keeps track of which bit.

.X counts bits set to 1.

Get the value to count.

Shift the next bit into carry.

If clear, skip the next instruction.

Increment the count of bits set to 1

Decrement which bit.

If not done, go on.

Transfer the count to .A for future

use.

Stop processing.

The value of $2100 may be altered using the M (Memory) command.

The 6502 Microprocessor 387

TXS—Transfer Value in X Register into Stack Pointer

The value currently in the X register is placed in the stack pointer.

Operation: X^ SP Flags Affected: None

Addressing Mode Syntax Opcode Bytes Cycles

Implied TXS 9A 1 2

The value in the X register is not altered. The information stored in the stack

area (page 1) is not changed by this instruction. Only which byte the stack pointer

points to is changed.

Example: When the computer is reset, part of the process is to reset the stack pointer to its

initial value, $FF. This example illustrates how that would be done using the TXS

instruction.

. sooo

. 2002

. 2003

A2 PP

9A

00

LDX

TXS

BKK

#$PP Load .X with the

value.

Transfer to SP.

Stop processing.

desired pointer

TYA—Transfer Value in Y Register into Acciunulator

The value currently in the Y register is placed in the accumulator.

Operation: Y-+A Flags Affected: Nf Z

Addressing Mode Syntax Opcode Bytes Cycles

Implied TYA 98 I 2

The value in the Y register is not altered. If the value transferred is negative, the

N flag is set to 1; otherwise it is cleared to 0. If the value transferred is zero, the Z

flag is set to 1; otherwise it is cleared to 0.

Example: This program finds the offset from $8020 ofthe first location containing the value

SEA in $8020-$811F by incrementing the Y register. Then the offset from $8000 is

calculated using the TYA instruction to transfer the contents of the Y register to

the accumulator and adding. Note that the status of the carry bit at $2010

indicates whether the first $EA occurs in $8020-$80FF (carry clear) or

$8100-$811F (carry set).

. 2000 A0 00 LDY #100 Start .Y at zero.

. 2002 A9 EA LDA #$EA Load the accumulator with the byte

to search for.

288 Machine Language on the Commodore Plus/4

S004

2007

2009

200A

200C

200D

200E

2010

2013

D9

FO

08

DO

18

98

69

8D

00

20

03

P8

20

00

80 CMP

BEQ

INY

BITE

CLC

TYA

ADC

21 STA

BRK

$8020,Y

I200C

#2004

#$20

12100

Examine the next memory location.

If equal, then done.

Increment the index.

If not finished, go back.

Prepare to add.

Copy the index into the accumulator

Add $20.

Store the result in $2100.

Stop processing.

Summary of Instruction Set

Opcodes and Number of Bytes

Addressing Modes (Bytes)

fflmm Abs ZP Ace Imp (,X) (),Y ZP,X AbfX Ab,Y Rel Ind ZPtY

Instr. f2J (3) (2) (I) (I) (2) (2) (2) (3) (3) (2) (3) (2)

Adc

And

Asl

Bcc

Bcs

Beq

Bit

Bmi

Bne

Bpl

Brk

Bvc

Bvs

Clc

Cld

Cli

Clv

Cmp

Cpx

Cpy

Dec

Dex

Dey

Eor

Inc

Inx

Iny

69

29

C9

EO

CO

49

6D

2D

OE

2C

CD

EC

CC

CE

4D

EE

65

25

06 OA

24

C5

E4

C4

C6

45

E6

00

18

D8

58

B8

CA

88

E8

C8

61

21

71

31

41

75

35

16

51 55

F6

7D

3D

IE

79

39

Cl Dl D5 DD D9

D6 DE

5D

FE

59

90

BO

FO

30

DO

10

50

70

The 6502 Microprocessor 289

Addressing Modes (Bytes)

ttlmm Abs ZP Ace Imp (,X) (),Y ZP,X Ab,X Ab,Y Rel Ind ZPfY

Instr. f2j (3) (2) (I) (1) (2) (2) (2) (3) (3) (2) (3) (2)

Jmp

JSR

Lda

Ldx

Ldy

Lsr

Nop

Ora

Pha

Php

Pla

Plp

Rol

Ror

Rti

Rts

Sbc

Sec

Sed

Sei

Sta

Stx

Sty

Tax

Tay

Tsx

Txa

Txs

Tya

A9

A2

AO

09

E9

4C

20

AD

AE

AC

4E

OD

2E

6E

ED

8D

8E

8C

A5

A6

A4

46 4A

05

26 2A

66 6A

E5

85

86

84

EA

48

08

68

28

40

60

38

F8

78

AA

A8

BA

8A

9A

98

Al Bl

01 11 15

36

76

El Fl F5

81 91 95

94

ID

6C

B5

B4

56

BD

BC

5E

B9

BE B6

19

3E

7E

FD F9

9D 99

96

Execution Times (in clock cycles)

Addressing Modes

Instr. fflmm Abs ZP Ace Imp (,X) (), Y ZP,X Ab,X Ab, Y Rel Ind ZP, Y

Adc

And

Asl

Bcc

Bcs

Beq

2

2

4

4

6

3

3

5 2

6

6

5*

5*

4

4

6

4*

4*

7

4*

4*

2**

2**

2**

890 Machine Language onthe Commodore Plus/4

Addressing Modes

Instr. ttlmm Abs IP Ace Imp (,X) (),Y ZP,X Ab.X Ab,Y Rel Ind ZP.Y

2**

2**

2**

2**

2**

Bit

Bmi

Bne

Bpl

Brk

Bvc

Bvs

Clc

Cld

Cli

Clv

Cmp

Cpx

Cpy

Dec

Dex

Dey

Eor

Inc

Inx

Iny

Jmp

Jsr

Lda

Ldx

Ldy

Lsr

Nop

Ora

Pha

Php

Pla

Plp

Rol

Ror

Rti

Rts

Sbc

Sec

Sed

2

2

2

2

2

2

2

2

2

4

4

4

4

6

4

6

3

6

4

4

4

6

4

6

6

4

3

3

3

3

5

3

5

3

3

3

5

3

5

5

3

2

2

2

7

2

2

2

2

2

2

2

2

2

3

3

4

4

6

6

2

2

6

6

6

6

6

5*

5*

5*

5*

5*

4

6

4

6

4

4

6

4

6

6

4

4*

7

4*

7

4*

4*

7

4*

7

7

4*

4*

4*

4*

4*

4*

4*

The 6803 Microprocessor 391

Addressing Modes

lNSTR.#Imm Abs ZP Ace Imp (,X) (),Y ZP,X Ab.X Ab,Y Rel Ind ZP,Y

Sei

Sta

Stx

Sty

Tax

Tay

Tsx

Txa

Txs

Tya

4

4

4

3

3

3

2

2

2

2

2

2

2

6 6 4

4

* Add 1 cycle if page boundary is crossed.

** Add 1 cycle if the branch occurs to the same page. Add 2 cycles if the branch occurs to a different page.

Opcodes

M

0

s

t

c
o

i

g

n

0

1

2

3

4

5

6

0

BRK

BPL

JSR

BMI

RTI

BVC

RTS

1 2

ORA

(,X)

ORA

0,Y

AND

(,X)

AND

0,Y

EOR

(,X)

EOR

0,Y

ADC

(,X)

Least Significant

4 5 6 8

ORA

ZP

ORA

ZP,X

BIT AND

ZP ZP

AND

ZP,X

EOR

ZP

EOR

ZP,X

ADC

ZP

ASL

ZP

ASL

ZP,X

ROL

ZP

ROL

ZP,X

LSR

ZP

LSR

ZP,X

ROR

ZP

PHP

CLC

PLP

SEC

PHA

CLI

PLA

Nybble

9

ORA

Imm

ORA

Ab,Y

AND

Imm

AND

Ab,Y

EOR

Imm

EOR

Abs,Y

ADC

Imm

A

ASL

Ace

ROL

Ace

LSR

Ace

ROR

Ace

C

BIT

Abs

JMP

Abs

JMP

Ind

D

ORA

Abs

ORA

Ab,X

AND

Abs

AND

Ab,X

EOR

Abs

EOR

Ab,X

ADC

Abs

E

ASL

Abs

ASL

Ab,X

ROL

Abs

ROL

Ab,X

LSR

Abs

LSR

Ab,X

ROR

Abs

292 Machine Language on the Commodore Plus/4

i

f

1

c

a

n

t

tvt
IN

y

b

D

1

e

7

8

9

A

B

C

D

E

F

0

BVS

BCC

LDY

Imm

BCS

CPY

Imm

BNE

CPX

Imm

BEQ

/

ADC

0,Y

STA

(,X)

STA

0,Y

LDA

(,X)

LDA

0,Y

CMP

(,X)

CMP

0,Y

SBC

(,X)

SBC

0,Y

2 4

STY

ZP

STY

ZP,X

LDX LDY

Imm ZP

LDY

ZP,X

CPY

ZP

CPX

ZP

Least Significant

5 6 8

ADC

ZP,X

STA

ZP

STA

ZP,X

LDA

ZP

LDA

ZP,X

CMP

ZP

CMP

ZP,X

SBC

ZP

SBC

ZP,X

ROR

ZP,X

STX

ZP

STX

ZP,Y

LDX

ZP

LDX

ZP,Y

DEC

ZP

DEC

ZP,X

INC

ZP

INC

ZP,X

SEI

DEY

TYA

TAY

CLV

INY

CLD

INX

SED

Nybble

9 A

ADC

Ab,Y

STA

Ab,Y

LDA

Imm

LDA

Ab,Y

CMP

Imm

CMP

Ab,Y

SBC

Imm

SBC

Ab,Y

TXA

TXS

TAX

TSX

DEX

NOP

C

STY

Abs

LDY

Abs

LDY

Ab,X

CPY

Abs

CPX

Abs

D

ADC

Ab,X

STA

Abs

STA

Ab,X

LDA

Abs

LDA

Ab,X

CMP

Abs

CMP

Ab,X

SBC

Abs

SBC

Ab,X

E

ROR

Ab,X

STX

Abs

LDX

Abs

LDX

Ab,Y

DEC

Abs

DEC

Ab,X

INC

Abs

INC

Ab,X

Decimal Mode

The 6502 is equipped with a decimal adder that can be used to process data stored

in binary coded decimal (BCD). Two decimal digits are stored in a byte by storing

a 0 through 9 in each of the low and high nybbles. When addition is performed, a

result above 9 in the low nybble causes a carry into the high nybble, and a result

above 9 in the high nybble causes a carry set condition. Subtraction performs in

an analogous way.

Decimal mode is enabled by setting the decimal mode flag in the status register

to 1 (see SED). It is disabled by clearing the flag to 0 (see CLD). One of the

initialization steps when the Plus/4 is first turned on (or reset) is to issue a CLD

instruction. To use decimal mode, issue a SED instruction.

The 6502 Microprocessor 293

Example: sooo

2001

2002

2004

2006

2007

P8

18

A9

69

D8

00

98

12

SED

CLC

LDA

ADC

CLD

BRK

##98

#$12

Set decimal mode.

Clear the carry for adding.

Load .A with 98 (BCD).

Add 12 (BCD).

Clear decimal mode.

Stop processing.

The result (in .A and the status register) will be 10 (BCD) with a carry.

Note: The zero flag is not valid following a decimal mode operation. Use a

compare to check for zero.

Note: The system interrupt service routine does not clear decimal mode. If it is

set in the main program, it is set during IRQ service unless the IRQ routine clears

decimal mode. Note that clearing decimal mode in the IRQ routine does not

affect its setting in the main program because the status register is restored during

the RTI.

Addressing Modes

Some 6502 instructions must be accompanied by an operand address containing

the data with which the instruction will be performed. There are a number of ways

to specify the operand address. Basically, 6502 addressing modes fall into two

categories, indexed and nonindexed. The nonindexed modes are immediate,

absolute, zero page, relative, and indirect. The indexed modes are absolute

indexed, zero page indexed, indirect indexed, and indexed indirect.

Many instructions do not require an operand. Their addressing mode is

referred to as implied and they require only 1 byte. In the machine-language

monitor, an implied mode instruction appears in this format:

mnemonic

where mnemonic is an instruction mnemonic.

The following instructions are available in implied mode: BRK, CLC, CLD,

CLI, CLV, DEX, DEY, INX, INY, NOP, PHA, PHP, PLA, PLP, RTI, RTS,

SEC, SED, SEI, TAX, TAY, TSX, TXA, TXS, and TYA.

A few instructions may be performed on the data in the accumulator. Their

addressing mode is referred to as accumulator and they require only 1 byte. In the

machine-language monitor, an accumulator mode instruction appears in this

format:

mnemonic

where mnemonic is an instruction mnemonic.

The following instructions are available in accumulator mode: ASL, LSR,

ROL, and ROR.

294 Machine Language on the Commodore Plus/4

Immediate Mode An instruction in immediate mode consists of 2 bytes. The

first is the opcode for the desired instruction. The second is the data for use with

the instruction. In the machine-language monitor, an immediate mode instruc

tion appears in this form:

mnemonic #$hli

where mnemonic is an instruction mnemonic and h represents a hexadecimal

digit.

The following instructions are available in immediate mode: ADC, AND,

CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA, and SBC.

AbsoluteMode An instruction in absolute mode consists of 3 bytes. The first is

the opcode for the desired instruction. The second is the low byte of the address of

the data to be used with the instruction. The third is the high byte of the address of

the data to be used with the instruction. In the machine-language monitor, an

absolute mode instruction appears in this form:

mnemonic

where mnemonic is an instruction mnemonic and h represents a hexadecimal

digit.

The following instructions are available in absolute mode: ADC, AND, ASL,

BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR, LDA, LDX, LDY, LSR,

ORA, ROL, ROR, SBC, STA, STX, and STY.

ZeroPageMode An instruction in zero page mode consists of 2 bytes. The first

is the opcode for the desired instruction. The second is the low byte of the address

of the data to be used with the instruction. The high byte of the address is assumed

to be zero and is not specified. In the machine-language monitor, a zero page

mode instruction appears in this form:

mnemonic $hli

where mnemonic is an instruction mnemonic and h represents a hexadecimal

digit.

The following instructions are available in zero page mode: ADC, AND, ASL,

BIT, CMP, CPX, CPY, DEC, EOR, INC, LDA, LDX, LDY, LSR, ORA, ROL,

ROR, SBC, STA, STX, and STY.

Relative Mode Only branch instructions are available in relative mode. They

consist of 2 bytes. The first is the opcode for the desired instruction. The second is

The 6502 Microprocessor 298

a 1-byte two's complement offset to the address to be branched to. When the

offset is used, the program counter points to the byte immediately following the

current instruction. Therefore, an offset of zero does not affect program flow.

The maximum branch forward is achieved with an offset of $7F (127). The

maximum branch backward is achieved with an offset of $80 (-128). In the

machine-language monitor, a relative mode instruction appears in this form:

mnemonic Ihhlili

where mnemonic is an instruction mnemonic, h represents a hexadecimal digit,

and $hhhh is the address to branch to. The monitor calculates the offset and

stores it in the appropriate location. If the specified address is too far away (more

than 129 bytes forward or more than 126 bytes backward from the beginning of

the branch instruction), a question mark will be displayed indicating an error in

the line.

The following instructions are available in relative mode: BCC, BCS, BEQ,

BMI, BNE, BPL, BVC, and BVS.

Indirect Mode Only the jump instruction is available in indirect mode. It

consists of 3 bytes. The first is the opcode for thejump instruction. The second is

the low byte of the address of the jump vector. The third is the high byte of the

address of the jump vector. In the machine-language monitor, an indirect mode

jump instruction appears in this form:

JMP (Ihlillll)

where h represents a hexadecimal digit and $hhhh is the address of the jump

vector in which the new program counter is stored. Thejump vector consists of 2

bytes: the first is the low byte and the second is the high byte of the new program

counter.

The JMP instruction is available in indirect mode.

Absolute IndexedMode In this mode, either the X register or the Y register is

used as an index. The address of the operand is calculated by adding the value of

the index to the specified base address. An instruction in absolute indexed mode

consists of 3 bytes. The first is the opcode for the desired instruction. The second

is the low byte of the base address. The third is the high byte of the base address.

In the machine-language monitor, an absolute indexed mode instruction using

the X register appears in this form:

mnemonic $hlLhli,X

where mnemonic is an instruction mnemonic and h represents a hexadecimal

digit.

£96 Machine Language on the Commodore Plus/4

The following instructions are available in absolute indexed mode using the X

register: ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, LSR, ORA,

ROL, ROR, SBC, and STA.

In the machine-language monitor, an absolute indexed mode instruction using

the Y register appears in this form:

mnemonic $hlilih,Y

where mnemonic is an instruction mnemonic and h represents a hexadecimal

digit.

The following instructions are available in absolute indexed mode using the Y

register: ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC, and STA.

ZeroPageIndexedMode In this mode, either the X register or the Y register is

used as an index. The address ofthe operand is calculated by adding the value of

the index to the specified base address. An instruction in zero page indexed mode

consists of 2 bytes. The first is the opcode for the desired instruction. The second

is the low byte of the base address. The high byte of the base address is assumed to

be zero and is not specified. In the machine-language monitor, a zero page

indexed mode instruction using the X register appears in this form:

mnemonic $lili,X

where mnemonic is an instruction mnemonic and h represents a hexadecimal

digit.

The following instructions are available in zero page indexed mode using the X

register: ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, LSR, ORA,

ROL, ROR, SBC, STA, and STY.

In the machine-language monitor, a zero page indexed mode instruction using

the Y register appears in this form:

mnemonic $lili,Y

where mnemonic is an instruction mnemonic and h represents a hexadecimal

digit.

The following instructions are available in zero page indexed mode using the Y

register: LDX and STX.

Note: In zero page indexed mode, the address of the operand is always on zero

page. For example, if the X register contains $04 and the instruction LDA $FE,X

is executed, the value found in location $02 will be loaded into the accumulator.

IndirectIndexedMode In this mode the Y register is used as the index. The base

address is found indirectly in the zero page location specified with the instruction.

Using Interrupts on the Plus/4 297

The address of the data is found by adding the index to the base address. An

instruction in indirect indexed mode consists of 2 bytes. The first is the opcode for

the desired instruction. The second is the low byte of the location at which the

base address is found. The high byte of the location at which the base address is

found is assumed to be zero and is not specified. In the machine-language

monitor, an indirect indexed mode instruction appears in this form:

mnemonic ($hli),Y

where mnemonic is an instruction mnemonic, h represents a hexadecimal digit,

and $hh is the zero page location of the low byte of the base address. The zero

page location following the specified zero page location must contain the high

byte of the base address.

The following instructions are available in indirect indexed mode: ADC,

AND, CMP, EOR, LDA, ORA, SBC, and STA.

IndexedIndirectMode In this mode the X register is used as the index. The zero

page base address is specified with the instruction. The address of the data is

found at the address created by adding the index to the base address. An

instruction in indexed indirect mode consists of 2 bytes. The first is the opcode for

the desired instruction. The second is the low byte of the base address. The high

byte of the base address is assumed to be zero and is not specified. In the

machine-language monitor, an indexed indirect mode instruction appears in this

form:

mnemonic ($hli,X)

where mnemonic is an instruction mnemonic, h represents a hexadecimal digit,

and $hh is the zero page base address. The value of the index is added to the base

address. The location thus pointed to must contain the low byte of the address of

the data; the following location must contain the high byte of the address of the

data.

The following instructions are available in indexed indirect mode: ADC,

AND, CMP, EOR, LDA, ORA, SBC, and STA.

Using Interrupts on the Plus/4

When a task such as the incrementing of a real-time clock must be performed on a

regular basis, it is frequently impractical to use straight-line code. To alleviate this

problem, the 6502 is equipped with processor interrupt capability. The Plus/4

implementation of interrupts is described in this section.

The 6502 has an IRQ (interrupt) line. When this line is activated by an

298 Machine Language on the Commodore Plus/4

interrupt, the processor performs a number of tasks. First, the current instruction

is completed. Next, the program counter and processor status register are pushed

onto the stack. Program control is then transferred through the IRQ vector at

$FFFE-$FFFF to an interrupt service routine.

The IRQ vector at $FFFE-$FFFF is located in the operating system ROM. It

points to a routine in the operating system ROM that initiates interrupt process

ing. First, all three user registers are pushed onto the stack (accumulator, then X

register, then Y register). Then it checks for the BRK instruction (B) flag in the

saved processor status register. Finding that the interrupt was not caused by a

BRK instruction, ajump indirect is performed through a vector at $0314-$0315.

This is normally the location of programmer intervention. To have a special

function performed, this vector can be changed to point at a user routine. To

complete the interrupt processing, either jump to the normal operating system

routine (the address of which can be found in $0314-$0315 on power-up), or pull

all three registers and return as shown here:

PLA

TAY

PLA

TAX

PLA

RTI

The RTI instruction restores the processor status register and program counter

from the stack. Hence, all of the processor registers are returned to their preinter-

rupt state, and the main program continues executing.

The SEI instruction can be used to disable interrupts. This sets the I bit in the

processor status register. While this bit is set, the processor cannot be interrupted

by a maskable (and non-BRK instruction) interrupt. The CLI instruction is used

to reenable interrupts.

The Plus/4 is equipped with an interrupt enable register ($FF0A). Setting the

appropriate bit in this register will cause the corresponding interrupt to occur

(when the I bit is clear). The Plus/4 also has an interrupt status register ($FF09).

The high bit of this register is set to 1 when an interrupt occurs. The remaining bits

are set to 1 when the corresponding device has an interrupt condition. These bits

are set regardless of the interrupt enable status of the device and therefore can be

used for timing or other functions with or without actually interrupting the

processor. All of the bits in this register are cleared to 0 by writing a 1 to them. The

bit corresponding to a device interrupting the processor must be cleared before it

can interrupt again.

Using Interrupts on the Plus/4 899

Raster Interrupts

The Plus/4 is capable of interrupting the processor in response to the vertical

position of the raster beam on the TV or monitor. This capability can be used, for

example, to update information for the screen display while it is not seen, thus

eliminating flicker.

To enable raster interrupts, bit 1 of the interrupt enable register ($FF0A) must

be set to 1. The low 8 bits of the raster value at which the interrupt is to occur (a

9-bit number) must be placed in the raster compare register ($FF0B). The high bit

is the low bit of the interrupt enable register ($FF0A) and can be set to the

appropriate value at the same time as the enabling. The raster is on the usable

screen (not the border) from about $04 through $CB.

When a raster interrupt occurs, bit 1 of the raster interrupt status register

($FF09) is set to 1. Also, bit 7 of this register is set to indicate that an interrupt

occurred.

Example: In this example program, raster interrupts are used to create a band of changed

background color on the screen. First, an interrupt occurs near the top of the

screen. The processing of this interrupt includes decrementing the background

color and setting up the next interrupt. The second interrupt occurs a few lines

lower. The processing of this interrupt includes incrementing the background

color back to its original value and setting up the first interrupt again. This

process is repeated forever.

Disable interrupts for set up.

Low byte of address of service routine.

Store in low byte of IRQ vector.

High byte of address of service routine.

Store in high byte of IRQ vector.

Bit 1 set to 1, bit 0 cleared to 0.

Enable raster interrupts and clear high

bit of compare value.

Compare value is $30.

Store in low bits of compare value.

Start interrupts going.

Infinite loop.

Get interrupt status register.

Clear all bits that were set.

Get raster compare value.

Compare to $50 (the bottom interrupt).

If less than $50 (the top interrupt),

branch.

Cortpare value for top interrupt.

Store in compare value.

Increment the screen color.

2000

2001

2003

2006

2008

200B

200D

2010

2012

2015

2016

2019

201C

201F

2022

2024

2026

2028

202B

78

A9

8D

A9

8D

A9

8D

A9

8D

58

4C

AD

8D

AD

C9

90

A9

8D

EE

19

14

20

15

02

0A

30

0B

16

09

09

0B

50

0B

30

0B

15

03

03

FF

FF

20

FF

FF

FF

FF

FF

SEI

LDA

STA

LDA

STA

LDA

STA

LDA

STA

CLI

JMP

LDA

STA

LDA

CMP

BCC

LDA

STA

INC

#$19

$0314

#$20

$0315

#$02

$FF0A

#$30

$FF0B

$2016

$FF09

$FF09

$FF0B

#$50

$2031

#$30

$FF0B

$FF15

. 202E

. 2031

. 2033

. 2036

. 2039

. 203A

. 203B

. 203C

. 203D

. 203E

4C

A9

8D

CE

68

A8

68

AA

68

40

39

50

0B

15

20

FF

FF

JMP

LDA

STA

DEC

PLA

TAY

PLA

TAX

PLA

RTI

$2039

#$50

$FF0B

$FF15

Jump to exit.

Compare value for bottom interrupt

Store in compare value.

Decrement the screen color.

Exit. Pull .A.

Transfer to .Y.

Pull .A.

Transfer to .X.

Pull .A.

Return from interrupt.

Try changing the values used in $2010 and $2026 to change the position of the

first interrupt or the values used in $2022 and $2031 for the second interrupt. To

regain control of the computer, push the reset button (and hold down RUN/

STOP if you do not want to return to BASIC).

Timer Interrupts

The Plus/4 graphics chip is equipped with three timers that can be used to

interrupt the processor. Interrupts from the first timer are enabled by setting bit 3

of the interrupt enable register ($FF0A) to 1. This timer has a 16-bit reload value

that is stored in two 8-bit registers. The low byte is stored in $FF00 and the high

byte in $FF01. A load from these registers reads the current value of the timer. A

store to these registers sets the reload value. In addition, a store to the low byte

($FF00) stops the counter, and a store to the high byte ($FF01) starts it. Hence,

the appropriate order for storing a new reload value is always low byte, then high

byte.

Once started, this timer counts down from the reload value to zero. Upon

reaching zero, it sets bit 3 of the interrupt status register ($FF09) to 1; if it has been

interrupt enabled, bit 7 of this register is also set to 1 and an interrupt occurs. This

timer is then reloaded with the reload value and proceeds to count down to zero,

repeating the process. For interrupts to continue to occur properly, bit 3 of the

interrupt status register ($FF09) must be cleared by storing a 1 to it, after

detecting a timer 1 interrupt.

The second and third timers are interrupt enabled by setting bits 4 and 6,

respectively, of the interrupt enable register ($FF0A) to 1. Unlike the first timer,

these timers do not have reload registers. Each has a 16-bit start value that is

stored into two 8-bit registers ($FF02-$FF03 for the second, and $FF04-$FF05

for the third). A load from these registers reads the current value of the timer. A

store to these registers sets the start value. As before, a store to a low byte ($FF02

or $FF04) stops the associated timer, and a store to a high byte ($FF03 or $FF05)

starts it. Again, the appropriate order for storing a new start value is lbw byte,

then high byte.

Once started, these timers count down from the start value to zero. Upon

reaching zero, they set bit 4 (for the second timer) or 6 (for the third timer) in the

Using Interrupts on the Plus/4 301

interrupt status register ($FF09) to 1; if interrupt enabled, bit 7 of this register is

also set to 1 and an interrupt occurs. These timers then continue to count down

from zero to $FFFF and from there back to zero unless start values are once

again stored for them. When they reach zero, the process repeats. For interrupts

to continue to occur properly, bit 4 or 6 (as the case may be) of the interrupt status

register ($FF09) must be cleared by storing a 1 to it, after detecting a timer 2 or 3

interrupt.

Example: This example program uses timers 2 and 3 to generate interrupts. Each timer

controls the updating of a separate and independent counter on the screen. The

main program reads the keyboard and outputs the characters to the screen. This

program illustrates the use of interrupts to update information on a regular basis

while response to user input is maintained.

The keyboard is read using an operating system ROM subroutine. It expects

the keyboard to have been scanned by the normal operating system's raster

interrupt. Hence, this program maintains the system interrupt and jumps to the

system interrupt service routine following completion of the counter updates.

Before executing this program, check the default contents of $0314-$0315 with

the M (Memory) command. The low byte of the default address for IRQ process

ing is located in $0314 and the high byte in $0315. If this address is not $CE0E,

replace the $CE0E at $2096 in the program with it.

Disable interrupts for set up.

Get low byte of interrupt routine

address•

Store in low byte of interrupt vector.

Get high byte of interrupt routine

address.

Store in high byte of interrupt vector.

Get low byte of start value for timer

two.

Store in start value register; stop

timer two.

Get low byte of start value for timer

three.

Store in start value register; stop

timer three.

Get high byte of start value for timer

two.

Store in start value register; start

timer two.

Get high byte of start value for timer

three.

Store in start value register; start

timer three.

Get value with bits 4 and 6 set to 1.

Clear interrupt status register for

timers two and three.

. 2024 A9 52 LDA #$52 Get value with bits 1, 4, and 6 set to 1.

. 2000

. 2001

. 2003

. 2006

. 2008

. 200B

. 200D

. 2010

. 2012

. 2015

. 2017

. 201A

. 201C

. 201F

. 2021

78

A9

8D

A9

8D

A9

8D

A9

8D

A9

8D

A9

8D

A9

8D

42

14

20

15

00

02

00

04

40

03

80

05

50

09

03

03

FF

FF

FF

FF

FF

SEI

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

#$42

$0314

#$20

$0315

#$00

$FF02

#$00

$FF04

#$40

$FF03

#$80

$FF05

#$50

$FF09

302 Machine Language on the Commodore Plus/4

. 2026 8D 0A FF STA $FF0A

2029

202B

202D

2030

2033

2034

2036

2037

203A

203C

203F

2042

2045

2047

2049

A2

A9

9D

9D

CA

10

58

20

F0

20

4C

AD

29

F0

A9

02

30

00

25

F7

E4

FB

D2

37

09

40

23

00

0C

0C

FF

FF

20

FF

LDX

LDA

STA

STA

DEX

BPL

CLI

JSR

BEQ

JSR

JMP

LDA

AND

BEQ

LDA

#$02

#$30

$0C00,X

$0C25,X

$202D

$FFE4

$2037

$FFD2

$2037

$FF09

#$40

$206C

#$00

. 204B 8D 04 FF STA $FF04

. 204E A9 80 LDA #$80

. 2050 8D 05 FF STA $FF05

. 2053 A9 40 LDA #$40

. 2055 8D 09 FF STA $FF09

. 2058 A2 02 LDX #$02

. 205A FE 00 0C INC $0C00rX

. 205D BD 00 0C LDA $0C00,X

. 2060 C9 3A CMP #$3A

2062

2064

2066

2069

206A

206C

206F

2071

2073

90

A9

9D

CA

10

AD

29

F0

A9

08

30

00

EE

09

10

23

00

BOC

LDA

0C STA

DEX

BPL

FF LDA

AND

BEQ

LDA

$206C

#$30

$0C00,X

$205A

$FF09

#$10
$2096

#$00

. 2075 8D 02 FF STA $FF02

. 2078 A9 40 LDA #$40

. 207A 8D 03 FF STA $FF03

. 207D A9 10 LDA #$10

. 207F 8D 09 FF STA $FF09

. 2082 A2 02 LDX #$02

Interrupt enable timers two and three

and the raster interrupts used by the

operating system•

.X indexes the counters on the screen,

.A contains the screen code for a zero.

Store zeroes to left counter.

Store zeroes to right counter.

Next counter location.

If not done, go back.

Start the interrupts going.

Get a character from keyboard queue.

If none, look again.

Put character to screen.

Look at keyboard queue again.

Interrupt service. Get interrupt status

register.

Mask off all but timer three bit.

If not a timer three interrupt, go on.

Get low byte of start value for timer

three.

Store in start value register; stop timer

three.

Get high byte of start value for timer

three.

Store in start value register; start

timer three.

Get value with bit 6 set to 1.

Clear interrupt status bit for timer

three.

.X indexes the counter on the screen.

Increment left counter location.

Load value.

Compare to one more than screen code for

nine.

If valid number code, go on.

Get screen code for zero.

Store in counter location.

Go on to next location.

If more digits, go back.

Get interrupt status register.

Mask off all but timer two bit.

If not a timer two interrupt, go on.

Get low byte of start value for timer

two.

Store in start value register; stop timer

two.

Get high byte of start value for timer

two.

Store in start value register; start

timer two.

Get value with bit 4 set to 1.

Clear interrupt status bit for timer two.

.X indexes the counter on the screen.

The Operating System SOS

2084 FE 25 0C INC $0C25,X Increment right counter location.

Load value.

Compare to one more than s creen code for

nine.

If valid number, go on.

Get screen code for zero.

Store in counter location.

Go on to next location.

If more digits, go back.

Jump to operating system interrupt

service routine.

Try changing the values used in S200B, $2015, $2073, and $2078 to change the

start value for timer 2 or the values used in $2010, $201 A, $2049, and $204E to

change the start value for timer 3. To regain control of the computer, push the

reset button (and hold down RUN/STOP if you do not want to return to

BASIC).

2087

208A

208C

208E

2090

2093

2094

2096

BD

C9

90

A9

9D

CA

10

4C

25

3A

08

30

25

EE

0E

0C

0C

CE

LDA

CMP

BOC

LDA

STA

DEX

BPL

JMP

?0C25,X

#$3A

$2096

#$30

$0C25,X

$2084

$CE0E

The Operating System

The operating system is a program that is built into the Plus/ 4. It resides in ROM

so that it is not erased, even when the computer is turned off. The operating

system oversees the operation of the computer system. When the computer is first

turned on, the 6502 microprocessor automatically looks at locations $FFFC-

$FFFD for the initial value of the program counter. Control is passed through

this vector to that address. At that address begins an operating system routine

that initializes all the registers and memory to be used subsequently to appro

priate values. Then, the operating system directs BASIC (or an external program

cartridge) to begin executing. BASIC makes frequent use of operating system

routines. Some of these routines are available to the machine-language pro

grammer, as outlined below.

Banking on the Plus/4

The Plus/4 is equipped with 64K of RAM, which is the maximum amount it can

address (using 16 bits). However, the operating system and the BASIC language

(as well as the built-in software) must reside somewhere. The solution is the

ability to "bank. "This means that certain registers have the function of determin

ing which memory (RAM or ROM) is addressed.

It is important to distinguish banking for the 6502 microprocessor, which is

discussed here, from choosing to have the graphics chip to look at ROM or

RAM, which is discussed in Chapter 4. These are two independent choices that do

not directly affect each other.

304 Machine Language on the Commodore Plus/4

The Plus/4 is designed to allow the microprocessor to look at ROM or RAM

in the address spaces $8000-$FCFF and $FF40-$FFFF. The intervening address

space is occupied by I/O and the graphics chip. When the Plus/4 is first turned

on, the microprocessor is initialized to look at ROM. Logically it must be so, or

the computer would have no program instructions to operate with. To switch to

looking at RAM, a store is done to location $FF3F. To switch back to ROM, a

store is done to location $FF3E.

When the ROM is banked in, a load from its area ofmemory results in reading

the ROM. A store to its area ofmemory stores the byte into the RAM underneath

the ROM. This makes it possible, for example, to store a new character set in the

RAM underneath the character ROM without banking in the RAM. Then the

graphics chip can be told to look at it.

Considerable care must be taken when banking out the operating system ROM

to operate in RAM. For example, the interrupt service vector at $FFFE-$FFFF,

which is set correctly in the operating system ROM, may not be set in RAM. And,

when setting it in RAM, remember that the interrupt service routine it normally

points to resides in the operating system ROM and is no longer present.

For use of the upper 32K of RAM for data, storing data to RAM does not

require banking the RAM in. When loading the data, it is possible to simply stop

interrupts (using the SEI instruction) before banking in RAM and fetching data.

ROM can then be banked back in and interrupts reenabled (using the CLI

instruction). This is the method used by BASIC to allow 60671 bytes free.

In addition to allowing switching between ROM and RAM, the Plus/4 allows

switching between several different ROMs in the address spaces $8000-$FBFF

and $FF40-$FFFF. This is accomplished by means of the cartridge bank port at

$FDD0-$FDDF, each location of which could switch in a different ROM when

stored to. Routines to facilitate the exchange of information between the operat

ing system and a cartridge program are located from $FC00-$FCFF and are

present in every ROM configuration. The Plus/4 built-in software resides in

cartridge bank 5.

ROM Subroutines

The operating system ROM in the Plus/4 contains a jump table to various

operating system subroutines. It is important to call operating system subroutines

only through thejump table when writing software designed to run on any Plus/4

computer. The reason for this is that the manufacturer occasionally makes

changes in the operating system that result in a change in the location of an

operating system routine. But the address of the subroutine call in thejump table

remains unchanged.

Before using operating system routines in a program, it is usually a good idea to

experiment with them; some have so many possible variations that it is difficult to

analyze how they function in every possible circumstance.

The Operating System 308

Alphabetic List of Operating System Subroutines

Routine Call Address

ACPTR

BASIN

BSOUT

CHKIN

CHOUT

CINT

CIOUT

CLALL

CLOSE

CLRCH

GETIN

IOBASE

IOINIT

LISTN

LOADSP

MEMBOT

MEMTOP

OPEN

PLOT

RAMTAS

RDTIM

READSS

RESET

RESTOR

SAVESP

SCNKEY

SCRORG

SECND

SETLFS

SETMSG

SETNAM

SETTIM

SETTMO

STOP

TALK

TKSA

UDTIM

UNLSN

UNTLK

VECTOR

$FFA5

$FFCF

SFFD2

$FFC6

$FFC9

$FF81

$FFA8

$FFE7

$FFC3

$FFCC

SFFE4

$FFF3

$FF84

SFFB1

SFFD5

SFF9C

SFF99

$FFCO

SFFFO

SFF87

SFFDE

$FFB7

$FFF6

$FF8A

$FFD8

SFF9F

SFFED

$FF93

$FFBA

SFF90

$FFBD

$FFDB

SFFA2

SFFE1

$FFB4

SFF96

SFFEA

$FFAE

$FFAB

$FF8D

306 Machine Language on the Commodore Plus/4

Operating System Subroutine Descriptions

$FF81 CINT

Registers Altered: .A, .X9 .Y

Initializes the screen editor. This subroutine performs such functions as setting

up default I/O devices (keyboard and screen), the text window, and the current

character color. It clears the screen to all blanks with character color black.

$FF84 IOINIT

Registers Altered: .A, .X

Initializes the I/O devices. This subroutine performs such functions as setting

up the graphics chip and the DMA disk.

SFF87 RAMTAS

Registers Altered: .A9 .X, .Y

Performs a RAM test. This subroutine performs such functions as clearing

zero page and pages 2, 3, 4, and 7, setting the top and bottom of memory, and

defining the function keys. Call it before any of these areas are initialized, or

otherwise they will be overwritten.

$FF8A RESTOR

Registers Altered: .A, .X, .Y

Restores the vectors to their initial values. This subroutine sets up the vectors

at $0312-$0331 from ROM, performing such functions as directing IRQ and

BRK service to the appropriate addresses.

$FF8D VECTOR

Registers Altered: .A, .Y

When called with the carry clear, loads the vectors at $0312-$0331 from a

designated section of memory. Before calling this subroutine, set .X to the low

address to load the vectors from, and .Y to the high address to load the vectors

from. Be certain none of the vectors will be used during the loading process (e.g.,

disable interrupts). When called with the carry set, this subroutine reads the

vectors and stores their values in the designated section of memory. Before calling

it, set .X to the low address to store the vectors to, and .Y to the high address to

store the vectors to.

The Operating System 307

SFF90 SETMSG

Registers Altered: .A

Sets the system message flag to control output of messages. The value in .A

when the routine is called is stored in the message flag ($9A). A value of $00

means a program is running (and presumably handles message output). A value

of $80 flags output of direct BASIC mode messages. A value of $C0 flags output

of MONITOR messages.

SFF93 SECND

Registers Altered: .A

Sends the value in .A as a secondary address to a device following a call to

LISTN ($FFB1). The valid secondary addresses depend on the device.

The secondary address must be ORed with $60 before SECND is called. For

the 1541 disk operating system, the low nybble determines the channel ($0 is

reserved for LOAD, $1 for SAVE, and $F is the command channel). If the high

nybble is $F, a CLOSE is indicated. If the high nybble is $E, an OPEN is

indicated.

The system I/O status byte may be checked for errors. It is read using

READSS ($FFB7).

$FF96 TKSA

Registers Altered: .A

Sends the value in .A as a secondary address to a device following a call to

TALK ($FFB4). The valid secondary addresses depend on the device.

The secondary address must be ORed with $60 before TKSA is called. For the

1541 disk operating system, the low nybble determines the channel ($0 is reserved

for LOAD, $1 for SAVE, and $F is the command channel). If the high nybble is

$F, a CLOSE is indicated. If the high nybble is $E, an OPEN is indicated.

The system I/O status byte may be checked for errors. It is read using

READSS ($FFB7).

SFF99 MEMTOP

Registers Altered: .X, .Y

When called with the carry set, returns with .X equal to the low byte of the top

of memory, and.Y equal to the high byte ofthe top bf memory. When called with

the carry clear, the top of memory ($0533-$0534) is set. The low byte is from .X

and the high byte from.Y. The top of memory is the address plus one of the end of

a contiguous section of RAM for use by BASIC. It is initially set during the

power-on sequence.

308 Machine Language on the Commodore Plus/4

SFF9C MEMBOT

Registers Altered: .X, .Y

When called with the carry set, returns with .X equal to the low byte of the

bottom of memory, and.Y equal to the high byte ofthe bottom ofmemory. When

called with the carry clear, the bottom of memory ($0531-$0532) is set. The low

byte is from .X and the high byte from . Y. Only the high byte of the bottom of

memory is initialized during the power-on sequence. BASIC does not use this

information.

$FF9F SCNKEY

Registers Altered: .A, .X, .Y

Scans the keyboard and sets up the keyboard queue and the function key index

register for the GETIN ($FFE4) and BASIN ($FFCF) routines. This subroutine

is normally called by the system IRQ service routine.

SFFA2 SETTMO

Registers Altered: none

The value in .A is stored in the timeout flag ($0535). This location is not used by

the built-in Plus/4 operating system. It is designed for use with add-on hardware

and software.

SFFA5 ACPTR

Registers Altered: .A

Returns 1 byte of data in .A from the serial bus or DMA disk using handshak

ing. A device must be instructed to talk using the routine TALK ($FFB4) before

this routine is called.

The system I/O status byte may be checked for errors. It is read using

READSS ($FFB7).

SFFA8 CIOUT

Registers Altered: none

Sends the byte in .A to the serial bus or DMA disk using handshaking.

Normally, one or more devices will have been instructed to listen using the

routine LISTN ($FFB1) before this routine is called.

The system I/O status byte may be checked for errors. It is read using

READSS ($FFB7).

The Operating System 309

SFFAB UNTLK

Registers Altered: .A

Commands all devices on the serial bus or the DMA disk to stop talking (see

TALK, $FFB4).

The system I/O status byte may be checked for errors. It is read using

READSS ($FFB7).

$FFAE UNLSN

Registers Altered: .A

Commands all devices on the serial bus or the DMA disk to stop listening (see

LISTN, $FFB1).

The system I/O status byte may be checked for errors. It is read using

READSS ($FFB7).

$FFB1 LISTN

Registers Altered: .A

Commands a device on the serial bus or the DMA disk to listen. The device

number ($04-$ IF) must be in .A. Also, if it has not previously been set, the device

number must be stored in the current device number ($AE) before this routine is

called.

The system I/O status byte may be checked for errors. It is read using

READSS ($FFB7).

SFFB4 TALK

Registers Altered: .A

Commands a device on the serial bus or the DMA disk to talk. The device

number ($04-$ 1F) must be in .A. Also, if it has not previously been set, the device

number must be stored in the current device number ($AE) before this routine is

called.

The system I/O status byte may be checked for errors. It is read using

READSS ($FFB7).

$FFB7 READSS

Registers Altered: .A

Returns the current value of the I/O status byte ($90) in .A. The bits of the

status byte have various meanings depending on the device accessed. In general, a

value of zero indicates no error. Some of the meanings of the status bits are

outlined in the following table.

Bit

0

1

2

3.

4

5

6

7

Tape I/O

—

short block

long block

read error

checksum error

end of file

end of tape

Serial I/O

timeout write

timeout read

—

—

—

—

end or identify

device not present

RS232I/O

parity error

framing error

receiver buffer overrun

receiver buffer empty

clear to send missing

—

data set ready missing

break detected

For the 1541 disk drive, the end or identify bit set usually means the end of file

has been reached. Also, for a LOADSP ($FFD5) with the verify flag set, bit 4 set

means that a verify error was found.

$FFBA SETLFS

Registers Altered: none

Prepares for a call to OPEN ($FFC0), LOADSP ($FFD5), or SAVESP

($FFD8). Before calling the routine, set .A to the logical file number to be

associated with the file (needed for OPEN only), .X to the device number, and.Y

to the secondary address to be sent to the device for OPEN; for LOADSP, a zero

for this secondary address causes a relocated load. If no secondary address is

needed, set ,Y to $FF.

SFFBD SETNAM

Registers Altered: none

Prepares for a call to OPEN ($FFC0), LOADSP ($FFD5), or SAVESP

($FFD8). Before calling this routine, set .A to the length ofthe file name, .X to the

low byte of the address of the file name, and .Y to the high byte of the address of

the file name. If no file name is needed, set .A to $00.

SFFCO OPEN

Registers Altered: .A, .X, .Y

This routine is vectored through $0318-$0319. It opens the logical file specified

in calls to SETLFS ($FFBA) and SETNAM ($FFBD).

If an error occurs, the message flag (see SETMSG, $FF90) is consulted to

determine what message (if any) to output. The carry is returned set, and .A

contains the error number. Possible errors are as follows:

$01 = The logical file table is full.

The Operating System 311

$02 = The specified logical file is already open.

$04 = The specified file name is not found on the specified device.

$05 = The specified device is not present.

The system 1/ O status byte may also be checked for errors. It is read using

READSS ($FFB7).

$FFC3 CLOSE

Registers Altered: .A, .X

This routine is vectored through $031 A-$031B. This routine closes the logical

file specified by the value in .A.

The system I/O status byte may be checked for errors. It is read using

READSS ($FFB7).

SFFC6 CHKIN

Registers Altered: .A, .X

This routine is vectored through $031 C-$031D. The logical file specified by the

value of .X, which must have been previously opened using OPEN ($FFC0), is

designated as an input channel.

If an error occurs, the message flag (see SETMSG, $FF90) is consulted to

determine what message (if any) to output. The carry is returned set, and .A

contains the error number. The possible errors are as follows:

$03 = The specified logical file is not open.

$05 = The specified device is not present.

$06 = The specified device is not an input device.

The system I/O status byte may also be checked for errors. It is read using

READSS ($FFB7).

SFFC9 CHOUT

Registers Altered: .A, .X

This routine is vectored through $031 E-$031F. The logical file specified by the

value of .X, which must have been previously opened using OPEN ($FFC0), is

designated as an output channel.

If an error occurs, the message flag (see SETMSG, $FF90) is consulted to

determine what message (if any) to output. The carry is returned set, and .A

contains the error number. The possible errors are as follows:

312 Machine Language on the Commodore Plus/4

$03 = The specified logical file is not open.

$05 = The specified device is not present.

$07 = The specified device is not an output device.

The system I/O status byte may also be checked for errors. It is read using

READSS ($FFB7).

SFFCC CLRCH

Registers Altered: .A, .X

This routine is vectored through $0320-$0321. The input and output channels

are cleared. If the serial bus or DMA disk was in use, an unlisten or untalk

command is sent. The input and output devices are reset to the keyboard and

screen.

The system I/O status byte may be checked for errors. It is read using

READSS ($FFB7).

$FFCF BASIN

Registers Altered: .A

This routine is vectored through $0322-$0323. This subroutine returns 1 byte

in .A from the current input channel. For all devices except the keyboard, calls to

OPEN ($FFC0) and CHKIN ($FFC6) must precede this call. The channel

remains open following the call to this routine.

The system I/O status byte may be checked for errors. It is read using

READSS ($FFB7).

For the keyboard, the first call to this routine turns on the cursor at its current

location and receives input (including function key definitions) that is echoed to

the screen until a carriage return is detected. A full screen of characters may be

entered. When the carriage return is received, the routine returns with the first

character in .A. Each subsequent call returns the next character. The input is

complete when a carriage return ($0D) is returned.

SFFD2 BSOUT

Registers Altered: none*

This routine is vectored through $0324-$0325. The byte in .A is sent to the

output channel. For all devices except the screen, calls to OPEN ($FFC0) and

CHOUT ($FFC9) must precede this call. The channel remains open following a

call to this routine.

The system I/O status byte may be checked for errors. It is read using

READSS ($FFB7).

♦When used to send data to device 1 (the cassette) or 2 (RS-232), this routine may alter the value

of .A on return.

The Operating System 313

$FFD5 LOADS?

Registers Altered: .A, .X, .Y

Loads a file into memory or verifies a file against memory. For a relocated

load, .X contains the low byte of the load address and .Y contains the high byte.

After storing this load address, the routine vectors through $032E-$032F. For a

load, .A should be $00. For a verify operation in which the designated memory is

compared with the file but not changed, .A should be $01 (or another nonzero

value). The call to this subroutine must be preceded by calls to SETLFS ($FFBA)

and SETNAM ($FFBD). If the secondary address sent with SETLFS is $00, then

the load is relocated to the address given in .X and .Y and the first 2 bytes of the

file are ignored; otherwise the first 2 bytes of the file specify the load address. In

any case, .X returns with the low byte of the last address loaded (+1) and .Y with

the high byte of the last address loaded (+1). For a verify, the status byte is $00 for

a valid compare and $10 when a difference is found.

If an error occurs, the message flag (see SETMSG $FF90) is consulted to

determine what message (if any) to output. The carry is returned set, and .A

contains the error number. The possible errors are as follows:

$00 = The routine was terminated by the STOP key.

$04 = The specified file name is not found on the specified device.

$05 = The specified device is not present.

$08 = The file name was missing.

$09 = The specified device is illegal for this purpose.

The system I/O status byte may also be checked for errors. It is read using

READSS ($FFB7).

$FFD8 SAVESP ^
Registers Altered: .A, .X, .Y

Saves memory into a file. The address to start the save must be stored on zero

page, low byte followed by high byte. This zero page location must then be placed

in .A. The low byte of the address to stop the save (plus 1) must be placed in .X

and the high byte in .Y. After these addresses are stored, the routine vectors

through $O33O-$O331. The call to this subroutine must be preceded by calls to

SETLFS ($FFBA) and SETNAM ($FFBD).

If an error occurs, the message flag (see SETMGS, $FF90) is consulted to

determine what message (if any) to output. The carry is returned set, and .A

contains the error number. The possible errors are as follows:

314 Machine Language on the Commodore Plus/4

$00 = The routine was terminated by the STOP key.

$05 = The specified device is not present.

$08 = The file name was missing.

$09 = The specified device is illegal for this purpose.

The system I/O status byte may also be checked for errors. It is read using

READSS ($FFB7).

SFFDB SETTIM

Registers Altered: none

Sets the system clock. This clock consists of 3 bytes (24 bits) on zero page

($A3-$A5). The low byte of the desired setting must be in .A, the middle byte in

.X, and the high byte in .Y. The clock is updated by the normal system IRQ

service routine. If the system IRQ service is not done, calls to UDTIM ($FFEA)

may be used to update it. The normal system interrupt is a raster interrupt that

occurs every 1 / 60th of a second (on NTSC systems). The clock is incremented by

1 until it reaches $4F1 A00, which is 24 hours; then it is reset to zero. During some

I/O operations, interrupts are disabled. This affects the clock.

SFFDE RDTIM

Registers Altered: .A, .X, .Y

Reads the system clock. The low byte of the clock setting is returned in .A, the

middle byte in .X, and the high byte in .Y. See SETTtM ($FFDB) for a descrip

tion of the system clock.

$FFE1 STOP

Registers Altered: .A, .X

This routine is vectored through $0326-$0327. This routine looks at a zero

page location ($91) to determine if the STOP key was pressed. This location is

updated by the system IRQ service routine or UDTIM ($FFEA). Ifthe STOP key

was detected, this routine calls CLRCH ($FFCC) and clears the keyboard queue.

If the Z flag is set on exit, the STOP key was detected; if it is clear, the STOP key

was not detected.

SFFE4 GETIN

Registers Altered: .A, .X, .Y

This routine is vectored through $0328-$0329. This subroutine returns 1 byte

in .A from the current input channel. For all devices except the keyboard, calls to

The Operating System 315

OPEN (SFFCO) and CHKIN ($FFC6) must precede this call. The channel

remains open following the call to this routine.

The system I/O status byte may be checked for errors. It is read using

READSS ($FFB7).

For the keyboard, this routine gets 1 byte from the queue. If the queue is empty,

a zero is returned in .A.

$FFE7 CLALL

Registers Altered: .A, .X

This routine is vectored through $032A-$032B. This routine clears all channels

with a call to CLRCH ($FFCC) and closes all logical files.

The system I/O status byte may be checked for errors. It is read using

READSS ($FFB7).

SFFEA UDTIM

Registers Altered: .A, .X

Increments the system clock ($A3-$A5) and compares it with S4F1A01 to

determine when to reset to zero. Also, this routine checks for the STOP key and

sets the STOP key flag ($91), which is used by STOP ($FFE1). This routine is

normally called by the system IRQ service routine. See SETTIM ($FFDB) for a

description of the system clock.

$FFED SCRORG

Registers Altered: .X, .Y

Returns $28 (the screen width) in .X and $19 (the screen height) in .Y to

indicate the physical size of the Plus/4 screen. This subroutine is useful only for

programs intended to run on other Commodore computers with a different

screen size (e.g., the VIC-20).

$FFF0 PLOT

Registers Altered: .A, .X, .Y

When called with the carry flag clear, sets the cursor position. The new cursor

line number should be in .X, and the new cursor column should be in .Y. The

screen window is returned to its default (the whole screen). When called with the

carry flag set, this routine returns the current cursor position. The cursor line

number is returned in .X and the cursor column in .Y.

316 Machine Language on the Commodore Plus/4

SFFF3 IOBASE

Registers Altered: .X, .Y

Returns $00 (the low byte of the 1/ O base address) in .X and $FD (the high byte

of the I/O base address) in .Y. This subroutine is useful only for programs

intended to run on other Commodore computers.

$FFF6 RESET

Registers Altered: all

Does a warm reset of the Plus/4. If the STOP key is detected, this routine goes

to the MONITOR, leaving the contents of memory intact. If STOP is not

detected, the Plus/4 goes to BASIC with the contents of memory reinitialized.

Interfacing with. BASIC

Sometimes it is desirable to combine BASIC and machine language to get the

advantages of both. This can be done in a number ofways, including changing the

operating system vectors ($0300-$0331). The most common methods include the

USR function, the SYS command, and adding a BASIC wedge (a custom

command set). These methods are discussed in this section.

The USR Function

USR is a floating point function. The syntax is

TJSR(x)

where * is a numeric expression. The USR function places the value of its

argument in floating point accumulator #1 ($61-$66) and then passes control of

processing to the address contained in the USR vector at $0501-$0502

(1281-1282). These locations are initialized so as to cause an ILLEGAL QUAN

TITY error if the USR function is called without changing their values. The USR

function returns to the BASIC program the value in floating point accumulator

#1 when its execution is complete. The machine code routine pointed to by the

USR vector must be terminated with an RTS to return control to BASIC.

The Floating Point Accumulator Locations $61-$66 comprise the value con

tained in floating point accumulator #1. The number is stored in exponential

form. The absolute value resides in $61-$65. Bit 7 (the sign bit) of location $66

indicates the sign of the number (if bit 7 is set to 1, the number is negative;

otherwise it is nonnegative). A value of zero is indicated by setting $61 (which is

Interfacing with. BASIC 317

the exponent) to zero. The nonzero absolute value ofthe floating point accumula

tor can be calculated using the following formula:

[2~8*($62) + 2~16*($63) + 2"24*($64) + 2~32*($65)] * 2[($61)"128]

where ($62) means the contents of memory location $62.

Example: In this example, the USR function is defined as a routine that returns the current

contents of the specified register of the graphics chip. BASIC program is as

follows:

10 P0KE1281,0:P0KE1282,32

20 PRIFT'WHICH REGISTER IS DESIRED";:I]mjT]Sr%

30 M=USR(lT%):IPM<OTHE]SrPRI]SrT//ILLEGAL REGISTER

1TUMBER//:GOTO2O

40

Line-by-Line Explanation

10 These two POKEs change the USR vector to point to the new routine.

20 The user is asked for an integer register number.

30 The USR function performs error checking, returning a negative value if

an illegal register number was requested. An illegal request causes control

to return to line 20.

40 The contents of the register are displayed.

The machine code subroutine to process the USR function can be entered with

the machine-language monitor. This subroutine converts the register number in

the floating point accumulator to a 1-byte index, checks it for validity, and gets

the appropriate contents of the graphics chip register. The subroutine then

converts this value into a floating point number and places it in the floating point

accumulator for return. A negative number is returned to indicate an error.

Look at sign of input register number.

If negative, it is invalid, so return.

Look at the exponent of input register

number.

If zero, it is zero, so skip conversion.

Prepare to subtract.

Load accumulator with 136.

Subtract the exponent.

This is the number of times to divide by

2.

Get the mantissa.

Decrement number of times to divide.

If negative, then done, so go on.

Divide by 2.

2000

2002

2004

2006

2008

2009

200B

200D

200E

2010

2011

2013

A5

30

A5

F0

38

A9

E5

A8

A5

88

30

4A

66

3A

61

0E

88

61

62

03

LDA

BMI

LDA

BEQ

SEC

LDA

SBC

TAY

LDA

DEY

BMI

LSR

$66

$203E

$61

$2016

#$88

$61

$62

$2016

318 Machine Language on the Commodore Plus/4

. 2014 D0 FA BNE $2010

. 2016 AA TAX

. 2017 E0 20 CPX #$20

. 2019 B0 IF BCS $203A

. 201B A0 08 LDY #$08

. 201D BD 00 FF LDA $FF00,X

. 2020 F0 15 BEQ $2037

. 2022 30 04 BMI $2028

. 2024

. 2025

. 2026

. 2028

. 202A

. 202C

. 202E

• 2030

. 2031

. 2033

• 2034

. 2035

. 2037

. 2039

. 203A

. 203C

. 203E

88

0A

D0

85

A9

A2

95

CA

10

18

98

69

85

60

A9

85

60

FA

62

00

03

63

FB

80

61

80

66

DEY

ASL

BNE

STA

LDA

LDX

STA

DEX

BPL

CLC

TYA

ADC

STA

RTS

LDA

STA

RTS

$2022

$62

#$00

#$03

$63,X

$202E

#$80

$61

#$80

$66

This is always taken.

Put converted register number in .X.

Compare to highest valid register number

(+1).
If greater than or equalr exit with

error.

This keeps track of multiplications by 2.

Get the register contents.

If zero, a zero must be returned.

When negative, no more muliplying

required.

Decrement multiplication index.

Multiply by two.

This is always taken.

Store the mantissa in floating point

accumulator.

Get a zero.

Load .X with size of rest of accumulator*

Fill rest of accumulator with zero.

Decrement position in accumulator.

If not done, go back.

Prepare to add.

Get multiplication index.

Add 128 to get exponent for accumulator.

Store in exponent.

Return.

Get value with sign bit set.

Put in sign register to indicate error.

Return.

The SYS Command

Example:

The SYS command transfers control from a BASIC program to a machine-

language subroutine. When the subroutine is completed with an RTS instruction,

control is returned to the BASIC program. When it is necessary to pass parame

ters to and from the machine-language subroutine, the values are normally stored

in memory with POKE commands and retrieved using PEEK.

Note: You can set the values of the accumulator, X register, Y register, and

status register on entry to your subroutine automatically by POKEing their

desired values into 2034-2037 ($07F2-$07F5). The values of the registers on exit

from your subroutine are returned in the same locations.

In this example, a machine code routine to fill an area of the screen with a given

character is called from a BASIC program using the SYS command. The BASIC

program is as follows:

10 PRI]SrTCHR$(147)//I]SrPIJTPILLCHAEACTER ";:GETKEYA$:

Interfacing with BASIC 319

20 IF]Sr<32THEN10

30 IFN<64THENM=N:G0T0100

40 IPW<96THE]SrM=]Sr-64:G0T0100

50 IPN<128THENM=]Sr-32:G0T0100

60 IP1T<16OTHEW1O

70 IPN<192THE]iTM=lir-64:G0T0100

80 IFW<224THEKrM=]Sr-128:G0T0100

90 IFU<255THE1TM=1T-128:ELSEM=126

100 PIiINTA#

110 PRIWT//I]SrPUT UPPER LEFT CORNER (X;Yy';:INPUTXl,Yl

120 PRINT^INPUT LOWER RIGHT COBJSTER (X,Y)7/;:I]SrPUTX2,Y2

130 P0KE216^1:P0KE217,Yl:P0KE218^:2:P0KE219,Y2:

P0KE220,M

140 SYS8192:IFPEEK(221)>127THE1IPRIWT

"ERROR IN COORDINATES"

Line-by-Line Explanation

10 Ask user for the character to fill with, and get one key.

20-90 Translate CHR$ code into screen code for use by the machine code

routine.

100 Echo the character back to the user.

110 Ask for, and get, the upper left coordinate of area to fill.

120 Ask for, and get, the lower right coordinate of area to fill.

130 Set up the parameters in $D8-$DC for the machine code routine.

140 Call the machine-language routine. Check for error return ($DD con

tains $FF), and put out error message if necessary.

The machine code subroutine to process the SYS command can be entered

with the machine-language monitor. The subroutine fills the specified area of the

screen with the specified character.

Byte with low two bits set.

Initialize high byte of screen pointer.

Get upper left corner y-coordinate.

Compare to maximum y value (plus one).

If greater than, or equal to, return with

error.

Multiply y-coordinate by two.

Multiply by two again.

Add y-coordinate to get y-coordinate

times five.

2000

2002

2004

2006

2008

200A

200B

200C

A9

85

A5

C9

B0

0A

0A

65

03

DF

D9

19

52

D9

LDA

STA

LDA

CMP

BCS

ASL

ASL

ADC

#$03

$DF

$D9

#$19

$205C

$D9

320 Machine Language onthe Commodore Plus/4

200E

200F

2010

2012

2013

2015

2017

2019

201B

201D

201F

2021

2023

2025

2027

2029

202B

202C

202E

2030

2032

2034

2036

2038

2039

203B

203D

203E

2040

2042

2044

2045

2047

2048

204A

204B

204D

204F

2051

2053

2055

2057

2059

205B

205C

205E

2060

0A

0A

26

0A

26

85

A5

C9

B0

65

85

90

E6

A5

C9

B0

38

E5

30

85

A5

C9

B0

38

E5

30

AA

A5

A4

91

88

10

CA

30

18

A5

69

85

90

E6

B0

A9

85

60

A9

85

60

DF

DF

DE

D8

28

3F

DE

DE

02

DF

DA

28

31

D8

2C

DD

DB

19

24

D9

IF

DC

CO

DE

FB

0D

DE

28

DE

EB

DF

E7

00

DD

FF

DD

ASL

ASL

ROL

ASL

ROL

STA

LDA

CMP

BCS

ADC

STA

BCC

INC

LDA

CMP

BCS

SEC

SBC

BMI

STA

LDA

CMP

BCS

SEC

SBC

BMI

TAX

LDA

LDY

STA

DEY

BPL

DEX

BMI

CLC

LDA

ADC

STA

BCC

INC

BCS

LDA

STA

RTS

LDA

STA

RTS

$DF

$DF

$DE

$D8

#$28

$205C

$DE

$DE

$2025

$DF

$DA

#$28

$205C

$D8

$205C

$DD

$DB

#$19

$205C

$D9

$205C

$DC

$DD

($DE),Y

$2042

$2057

$DE

#$28

$DE

$203E

$DF

$203E

#$00

$DD

#$FF

$DD

Multiply by two.

Multiply by two.

Double precision is now required.

Multiply by two low byte.

Multiply by two high byte.

Store low byte of screen pointer.

Get upper left corner x-coordinate.

Compare to maximum x value (plus one) •

If greater than, or equal to, return with

error.

Add to low byte of screen pointer.

Store low byte of screen pointer.

If no carry, go on.

Increment high byte of screen pointer.

Get lower right corner x-coordinate.

Compare to maximum x value (plus one) •

If greater than, or equal to, return with

error.

Prepare to subtract.

Subtract upper left x-coordinate.

If result is negative, return with error.

Number of columns is in $DD.

Get lower right corner y-coordinate.

Compare to maximum y value (plus one).

If greater than, or equal to, return with

error.

Prepare to subtract.

Subtract upper left y-coordinate.

If result is negative, return with error.

Number of lines is in .X.

Get fill character.

Set .Y to number of columns.

Store fill character on screen.

Decrement column count.

If not done, go back.

Decrement line count.

If finished, go to success return.

Prepare to add.

Get low byte of screen pointer.

Add one line.

Store in low byte of screen pointer.

If carry clear, go back to continue.

Increment high byte of screen pointer.

This is always taken.

Get ready for success return.

Store zero in return status location.

Return to BASIC program.

Get ready for error retarn.

Store $FF in return status location.

Return to BASIC program.

Interfacing with BASIC 381

Adding a BASIC Wedge

Example:

BASIC retrieves each character from RAM by calling a routine referred to as

CHRGET, which is located at $0473. Because this is in RAM (initialized on

power up), it can be altered to recognize and process symbols as desired by the

programmer. It is possible to add BASIC commands in this way.

This example shows one way to add a direct-mode-only command to BASIC.

The command is the English pound symbol (£), and it increments the border

color. The first step is to enter the machine-language wedge through the machine-

language monitor.

2000 48

2001 A5 9A

S003 10 OB

S005 68

2006 C9 5C

PHA

LDA $9A

BPL $2010

PLA

CMP #$5C

. 2008 DO 07 BNE $2011

200A EE 19 PP IKrC $FP19

200D 4C 73 04 JMP $0473

2010 68 PIA

2011 8D 3E PP STA $PP3E

2014 4C 84 04 JMP $0484

Save the character on the stack.

Look at the message flag.

If positive, then this is not direct

mode so leave.

Get the character.

Compare with the English pound

symbol.

Not one, so leave.

Increment the border color.

Go to get the next character.

Get the character.

Back to ROM.

Go back to the operating system

routine.

After the wedge code is in place, change the statement at $0481 from STA

$FF3E to JMP $2000. Then exit to BASIC. When in direct mode, you can input

the English pound symbol to increment the border color. Everything else works

normally.

Relocating BASIC RAM

BASIC keeps track of the RAM it is permitted to use in a series of pointers,

$2B-$38. Some care must be taken when you change these pointers. The main

reason for moving BASIC is to reserve some of the RAM usually used by BASIC

for a machine-language routine.

Moving the top of BASIC down is the easiest way to restrict the RAM

available to BASIC. This can be done with the following sequence of commands:

322 Machine Language on the Commodore Plus/4

POKE 55,low byte ofnew top ofRAMplus one

POKE 56,high byte ofnew top ofRAMplus one

CLR

To execute machine code that is located underneath the BASIC or operating

system ROM, the routine must begin somewhere NOT underneath the ROMs

and bank in RAM (see the section on banking) before transferring control. The

transfer code could be located in the cassette buffer ($0333-$03F2) or some other

safe location. The machine code routine must bank ROM in before returning to

BASIC. The pointer to the top ofmemory at 1331-1332 ($0533-$0534) must also

be changed in some applications.

Moving the bottom of BASIC up can be accomplished with the following:

POKE 43,low byte ofnew bottom ofRAM

POKE 44,i2igZ2 byte ofnew bottom ofRAM

POKE pew bottom ofRAMminus one,0

NEW

Note: The pointer to the bottom of memory at 1329-1330 ($0531 -$0532) does

not appear to be used by BASIC.

After executing these commands, machine code could be placed in the vacated

RAM at $1000. The GRAPHIC command moves the bottom of BASIC up $3000

from its location before the command is given, and GRAPHICCLR moves it

down $3000 back to its original location. But the graphic screen itself is always in

the same position at $1800-$3FFF. Care must be taken to avoid conflicts.

6 Using Peripheral Devices

The Plus/4 is compatible with the 1541 disk drive and Commodore's printers

available for the Commodore 64 and VIC 20, such as the MPS-801 and 1526. A

new Direct Memory Access (DMA) fast disk drive has been promised, but as of

this writing, it is not available. The Plus/4 is NOT compatible with the

DATASSETTE cassette player used with the earlier computers (the C2N/1530)

but rather can use a new Commodore DATASSETTE, the 1531. The Plus/ 4 has

a new RS232 output that is not completely compatible with the 64. Therefore, you

cannot use the VIC modem or automodems sold for the 64 and VIC 20. The

Plus/4 is compatible with the model 1660 MODEM/300. The Plus/4 also uses a

new joystick, the T-1341.

The Disk Drive

The disk drive is a hardware device that is controlled by software known as the

Disk Operating System (DOS). Commodore disk drives generally have the DOS

in the disk drive rather than in the computer. Hence, the drives are referred to as

"intelligent." The 1541 has its own built-in 6502 microprocessor, a DOS ROM,

and some RAM. Programs running in the computer send commands to the DOS

through the serial bus. The BASIC section of this chapter covers the commands

recognized by the DOS. This information will be useful for machine-language

programmers as well.

Most often the data and programs stored on a diskette are organized into files.

The only exception is when direct-access programming is used to put information

on the diskette. Each file is identified with a file name that is assigned to it when it

is created. The file name of each file on the same diskette must be unique.

Occasionally (where noted below), it is useful to refer to a file (or group of files) by

using a "wild card" in the file name position of a command. The Plus/ 4 supports

two such wild cards. One is the asterisk, which when used in a file name means

that any characters appearing at and after the position of the asterisk match. For

example, the use of "F*" as a file name matches all file names on the diskette that

323

384 Using Peripheral Devices

begin with the letter F. The second wild card is the question mark, which is used to

mean any character in that specific position matches. For example, the use of

"F??PRG" as a file name matches all file names on the diskette starting with F,

followed by two characters, and ending in PRG. The key difference between the

two wild cards is that the asterisk matches all combinations of any number of

characters and must be at the end of the string, whereas the question mark

matches any single character and can be in any position in the string.

The information in this section has been verified with a 1541 disk drive. The

BASIC and machine-language access to the DMA disk should be the same.

However, the commands that the drive itself recognizes may be different. Please

refer to the manual for specific information on the DMA disk.

Using a Disk Drive with BASIC

The disk drive can be used to save BASIC programs or to create and manage data

files through BASIC. There are different types of files that can be used for

information storage, or a program can access specific areas on the disk directly.

Each type of file and all the direct-access commands are covered in this section.

A number of maintenance functions are available for use with diskettes. These

are detailed in Chapter 1 and reviewed in this chapter (see Diskette Mainte

nance). In particular, a new diskette must be formatted before its first use.

If the red light on the disk drive blinks at any time, an error has occurred. To

read the error, type

PRINT DS$

For an explanation of DOS errors, see Appendix A. A program can check for

DOS errors by looking at the reserved variable DS. If DS is not zero, then an

error has occurred and DS gives the error number. The error message can then be

printed by printing DS$. Error checking should be done frequently in BASIC

programs that use the disk. Most errors in disk 1/ O are reported in DS and DS$.

A notable exception is the end-of-file that is returned in the status variable, ST

with bit 6 set (a decimal value of 64).

Saving, Loading, and Verifying Programs

Since one of the main uses for a disk drive is to save and retrieve BASIC

programs, BASIC has built-in commands to make it easy. You can save programs

with the DSAVE (or the SAVE) command.

DSAVE filename9I>drive,TJvjiit

The Disk Drive 325

Thefilename is a string expression of up to 16 characters by which the program

will be known on the disk. Each file on a disk must have a unique name. The drive

is the optional drive number (which is not needed for the 1541). The unit is

optional; it is the device number for the disk and is assumed to be 8 if not

specified.

SAVE filename,device

Thefilename is the same as above. The device is the device number for the disk.

Neither of these parameters may be omitted in using the SAVE command to save

a program on the disk.

To retrieve the program, the DLOAD (or LOAD) command can be used.

DLOAD filenamejidrive^unit

Thefilename is the name used when saving the program. The drive and unit are

the same as PSAVE and are optional. Wild cards may be used in the file name of

a LOAD command. The first file in the directory of the diskette with a matching

name is loaded.

LOAD filename,device,ab8olute/relative flag

Again, thefilename is the same name used to save the program, and the device is

the disk device number. The absolute/relativeflag is optional. If it is omitted or is

0, the file is loaded as a BASIC program starting at the beginning of BASIC

RAM. If it is 1, the file is loaded at the location from which it was saved.

To compare a program in memory with one stored on disk without altering

memory, use the VERIFY command. It reports if the file is not identical to the

program in memory.

VERIFY filename,device9ab80lute/relative flag

All of the parameters are the same as for LOAD.

Using Data Files

Several types ofdata files can be created, but they all share the BASIC commands

required to access them. The first step in creating any data file is to open it for use.

326 Using Peripheral Devices

The filenumber is the logical number to be associated with this file. It is for

reference purposes only and can be 0-127 (128-255 will send a linefeed character

following every carriage return). The device is the device number ofthe disk drive.

The secondary address is the channel number to be used. For a data file it should

be 2-14, and when more than one data file is in use, each must use a different

channel. Channel numbers 0 and 1 are used by the DOS for saving and loading

and are not normally used in programs. Channel number 15 is the command

channel, discussed in the diskette maintenance and direct-access programming

sections. The last parameter consists of the file name (a string expression of up to

16 characters), the type of file, and the mode of access separated by commas. If

omitted, the mode is assumed to be read, and the type of file is the same as when

the file was created. The type of file can be

- S for sequential

-> P for program

T L for relative

~ U for user

The mode can be

W for write

R for read

After the file is open, output may be directed to it by referring to its logical file

number in a PRINT# or CMD command. Input may be received from it by

referring to its logical file number in an INPUT# or GET# command.

When the input to or output from a file is complete, the file must be closed with

CLOSE filenumber

wherefilenumber is the logical file number of the file to close.

Sequential Files

The most straightforward type ofdata file is the sequential file. It is opened with a

file type parameter of S. After a sequential file is opened, each byte that is sent to

it is stored sequentially on the disk. The format of the bytes written to a sequential

file must be designed with the method of retrieval in mind. If they are to be read

one at a time by the GET# command, any format is all right. However, if they are

to be read by the INPUT# command, care must be taken to store comma

characters between values and carriage return characters between lines of input.

The Disk Drive 327

Example: 10 0PEin,8,2,"DATAFILE,S,W"

20 IFDSO0THENPRIlTTDS$:CL0SEl:E]SrD

30 F0RI=lT010

40 PRINT''WHAT ARE'T'TH VALUES OF XAM) Y'^:IIIPUTX,Y

50 PRIlTT#l,X;//,//;Y

60 IFDS=OTHENNEXT:ELSEPRIHTDS$:CLOSEl:E]SrD

70 CL0SE1

80 0PEEU,8,2,"DATAFILE"

90 1=1

100 INPUT#1,X,Y

110 PRINT I"TH VALUES ARE",X,Y

120 IFST=OTHENT=I+1:GOTO1OO

130 CL0SE1

Line-by-Line Explanation

10 Open a sequential file called DATAFILE on device 8 using channel 2 for

writing.

20 Check for an error. If one is found, print message and stop.

30 I runs from 1 to 10.

40 Accept input from the keyboard for the values of X and Y.

50 Output the values of X and Y to the data file separated by a comma. A

carriage return is automatically sent because no semicolon is found at the

end of the statement.

60 Check for an error. If there is no error, get next I. If there is an error,

print message and stop.

70 Close the data file just created.

80 Now, open DATAFILE for reading. Since the type and mode are omit

ted, they are assumed to be sequential and read.

90 I counts the records read.

100 Read a set of X and Y.

110 Print the values read.

120 Check for end-of-file. If not found, add one to I and read next record.

130 Close the file.

328 Using Peripheral Devices

Program Files

The program file type is used for storage of programs. It can also be used for data

storage and is opened with a file type parameter of P. Its format is identical to the

sequential file format. When a program file is created by a save command, the

first 2 bytes of the file contain the address from which the program was saved. The

following example illustrates this. Type in the program and save it with the

following command:

DSAVE'TROGRAM"

Then run the program. It reads in the load address that was saved in the file and

prints it out.

Example: 10 0PENl,8,2,"PR0GRAM"

20 IPDS<>OTHEITPRI]SrTDS$:CLOSEl:E]SrD

30 GET#lrAL$:GET#lrAH$

40 A=ASC(AH$)*256+ASC(AL$)

50 PRI^'THE LOAD ADDRESS IS ";A

60 CLOSE1

Line-by-Line Explanation

10 Open the program file with read access (the default).

20 Check for errors. If there is an error, quit.

30 Get the first 2 bytes in the file.

40 Calculate the load address.

50 Output the load address.

60 Close the file.

Relative Files

The types of files discussed previously store information sequentially; that is, to

read a single item somewhere in the middle of the file, you must first read all the

items before it. To reread the item, you must start at the beginning again. When

data will be accessed in a "random" fashion (i.e., you are equally likely to want to

access any piece of data), a relative file can be used.

A relative file is opened with a file-type parameter of L. A relative file is a series

of "records." Each record contains the data for one individual in the database and

is of a predetermined length. When you create a relative file, the record length

must be specified. The syntax is

The Disk Drive 329

OPEN fUenumber,device,channel,"fUename,L;'+CKR$Qengt2i)

where filenumber is the logical file number (0-127), device is the disk drive's

device number, channel is the channel to use (2-14), andfilename is the name by

which the file is known. The record length is a number (1-255) or numeric

expression. The file type and record length may be omitted when you are opening

an existing relative file.

To communicate with a relative file, you must open the command channel of

the disk drive. The following command does that:

OPEN filenumber,device,l5

wherefilenumber is the logical file number (0-127, but not the same as the relative

file itself), and device is the drive's device number.

To read or write a record in the relative file, the file pointer must be positioned

to the desired record with the following command:

PRINT#fiienumber//P//CHR$(ciinl)CHR$(rcio)CHR$(rcJ2i)

CHRl(pos)

wherefilenumber is the logical file number assigned to the command channel,

chnl is the channel number assigned to the relative file in its OPEN command,

rclo is the low byte of the desired record number, rchi is the high byte of the

desired record number, and pos is the position in the record. Errors should be

caught after this statement by examining DS and DS$. If the record requested

does not exist, DS returns a 50. It should be noted, however, that whenever a new

sector on the disk is added to the file, every record that it would contain exists,

even if that record has not been written to. The first byte of a record that has not

been written to is always a CHR$(255).

This example program sets up a relative file containing names and phone

numbers. The record size is 21 (10 for the name, then a separating comma, and 10

for the phone number). Each time the program is run, the user may add a name

and number or retrieve a name and number.

Example: 10 OPEN1,8,2/'PHONES,L,"+CHR$(21)

20 IFDSO0THENPRINTDS$:CLOSE1:END

30 OPEN15,8,15

40 IFDS<>0TOENPRINTDS$:GOTO170

50 PRINTMDO YOU WANT TO ADD A NAME";:INPUTA$

60 IFLEFT$(A$,1)="Y"THEN180

70 PRINT"WHOSE NUMBER DO YOU NEED";:INPUTN$

80 N$=LEFT#(N$,10)

90 R=l

100 PRINT#15f"P"CHR$(2)CHR$(RAND255)CHR$(INT(R/256))CHR$(l)

110 IFDSO0THENPRINTDS$:GOTO170

330 Using Peripheral Devices

120 INPUT*1,NA$,NU$

130 IFNA$=N$THEN160

140 IFASC(NA$)=255THENPRINTN$;" NOT POUND":GOTO170

150 R=R+1:GOTO100

160 PRINTN$;IMS NUI^ER IS ";NU$

170 CLOSE1:CLOSE15:END

180 PRINT"WHAT IS THE NAME";:INPUTNA$

190 NA$=LEFT$(NA$,10)

200 PRINT"WHAT IS ";NA$;MIS NUMBER";:INPUTNU$

210 NU$=LEFT$(NU$,10)

220 R=l

230 PRINT*15,"P"CHR$(2)CHR$(RAND255)CHR$(INT(R/256))CHR$(1)

240 D=DS:IFD=0THEN260

250 IFD=50THENGOTO280:ELSEPRINTDS$:GOTO310

260 INPUT*1,N$

270 IFASC(N$)O255THENR=R+1:QOTO230

280 PRINT#15f"P"CHR$(2)CHR$(RAND255)CHR$(INT(R/256))CHR$(l)

290 D=DS: IFDO0ANDDO50THENPRINTDS$:GOTO310

300 PRINT*l,NA$+","+NU$

310 CLOSE1:CLOSE15:END

Line-by-Line Explanation

10 Open the relative file called PHONES with record size 21.

20 If an error occurred, then quit.

30 Open the command channel of the disk drive.

40 If an error occurred, then quit.

50 Find out if this is add or retrieve.

60 If it is add, go down to line 180.

70 Find out the name to search for.

80 Trim off unused characters.

90 Start with record number 1.

100 Position file pointer to beginning of record.

110 If an error occurred, then quit.

120 Get the name and number on this record.

130 If it is the correct name, go down to line 160.

140 If the record has never been used, the search has failed.

150 Go on to the next record.

160 Print out the name and number.

170 Close the files and quit.

The Disk Drive 331

180 Find out the name to add.

190 Trim off unusable characters.

200 Find out the number to add.

210 Trim off unusable characters.

220 Start with record number 1.

230 Position file pointer to beginning of record.

240 Save the error number in D. If no error, continue.

250 If a record not found error occurs, then here is the position to put a new

record. Otherwise, inform user, and quit.

260 Read the name on this record.

270 If it is a valid name, go on to next record. Otherwise, here is the position

to put a new record.

280 Position file pointer to beginning of record.

290 Read the error. If no error or a record not found error, ignore. Other

wise, inform user and quit.

300 Output the new name and number.

310 Close the files and quit.

User Files

The final file type that can be created with the OPEN command is a user file,

which is designated with a file type parameter of U. The user file type lets you

enter into the directory of the diskette a file with a user-defined structure. If it is

opened and written to in the normal manner, a user file has the structure of a

sequential file. Designing a custom file structure requires the use of the direct-

access commands detailed in the next section.

Diskette Maintenance A number of useful commands can be used to handle

diskettes. Most of these are available in two formats on the Plus/4. The Plus/4

supports BASIC 3.5 disk handling commands that may also be sent to the drive

through the command channel. The BASIC 3.5 commands detailed in Chapter 1

are reviewed. The equivalent command channel commands (which are especially

useful in machine language programming) are fully described here.

To use the command channel, it must first be opened with

OPEN" filenumber,device,lS

332 Using Peripheral Devices

where filenumber is the logical file number to be associated with the command

channel and device is the device number of the disk. As usual, when communica

tion through the command channel is complete it must be closed as follows:

CLOSE filenumber

wherefilenumber is the same logical file number used to open the channel.

Examining the Directory of a Diskette

The directory of a diskette lists all the files stored on the diskette and the number

of sectors each file occupies. The directory cannot list individual sectors allocated

with direct-access commands, but the blocks free total does reflect those alloca

tions. The BASIC 3.5 command is

DIRECTORY DdrivePunitfflename

where drive is the optional drive number (which is not needed for the 1541), unit is

the optional device number ofthe disk drive, andfilename is an optional file name

to search for. Thefilename is a literal string (in quotes) or a string expression (in

parentheses). Wild cards may be used to get a directory of all those files with

similar names.

Another way of examining the directory is to type

LOAD"$",device

where device is the device number of the disk drive, and then

LIST

Note: The LOAD command erases the program in BASIC memory.

Formatting a Diskette

Before a diskette can be used for storing information, it must be formatted.

Formatting creates data areas on the diskette that the disk drive can recognize.

Formatting a diskette previously used to store information erases all the informa

tion on the diskette. To format a new diskette, the HEADER command can be

used. Its syntax is

HEADER diskname^identification,!^drive,ON Uunifc

The Disk Drive 333

where the diskname is a string of up to 16 characters that is displayed whenever a

directory of the disk is requested. The disknameis a literal string (in quotes) or a

string expression (in parentheses). The identification is two characters that the

DOS uses to identify the disk. It is a good idea to give a different identification to

each disk. For a brand new disk, an identification must be given, but an old disk

can be cleared of information more quickly by omitting the identification

parameter. The drive number is required (for the 1541, use 0). The unit number,

which is optional, is the device number for the disk drive. It is set by the factory to

8. The device number can be changed in the hardware according to instructions in

the disk drive manual. The device number can also be changed temporarily by the

disk address change utility program on the diskette that comes with the drive.

Whenever the device number is optional in a command, it is assumed to be 8 if

omitted.

To format a diskette by direct command to the DOS, use

PRIWT#

wherefilenumber is the logical file number of the previously opened command

channel, diskname is the name (up to 16 characters) to be displayed with the

directory of the diskette and identification is the two characters used by DOS to

identify the diskette. As with the header command, any information previously

on the diskette is lost. You can reformat a reused disk more quickly by omitting

the identification.

Initializing a Diskette

The DOS keeps its own local copy of the diskette's ID and BAM (block availabil

ity map). It uses the BAM information to decide what areas of the diskette are

available for writing. If DOS discovers that a diskette it is attempting to write on

has a different ID from that it has stored, an error (error number 29) occurs.

Unfortunately, the DOS identifies diskettes on the basis of their ID number only.

If two diskettes have the same ID number, and they have been switched since the

DOS last updated its information, the DOS uses an incorrect BAM. This is a

disastrous occurrence. You can easily avoid this by ensuring that the DOS has the

correct BAM in memory. This is done with the initialize command that is sent

through the command channel:

PRINT* filenumber/'I"

wherefilenumber is the logical file number of the previously opened command

channel. It is a good idea to perform an initialization whenever you switch

diskettes, regardless of their respective ID numbers.

334 Using Peripheral Devices

Validating a Diskette

Whenever a file is added to a diskette, the DOS updates the directory and the

BAM. Occasionally the two do not match, when, for example, a file was opened

but never closed. The COLLECT or validate command must be used to remedy

this situation. Never SCRATCH an unclosed file. (Unclosed files are denoted

with an asterisk in the directory listing.) Do not COLLECT a diskette that has

had sectors written to it with the direct-access commands described in the next

section. The COLLECT command syntax is

COLLECT Ddrive, ON Uunit

; where drive is the optional drive number (which is not needed for the 1541) and

unit is the disk drive's device number. If omitted, the unit is assumed to be 8.

To collect a diskette by direct command to the DOS, use

PRINT# filenumber,"V"

wherefilenumber is the logical file number of the previously opened command

channel.

Deleting Files on a Diskette

To delete a properly closed file from the diskette, the SCRATCH command is

used. Its syntax is

SCRATCH filename,'Ddrive,'Uviiit

wherefilename is the name of the file to be deleted, drive is the optional drive

number (which is not needed on the 1541), and unit is the disk drive's device

number, which is assumed to be 8 if not specified. Do not SCRATCH an

unclosed file. Instead, use the COLLECT command described previously. Wild

cards may be used in the file name for a SCRATCH to delete every file with a

matching file name, but caution is advised because one can easily delete large

numbers of files by using them.

To delete a file by direct command to the DOS, use

PRI1TT# filenumber,"S:filename"

wherefilenumber is the logical file number of the previously opened command

channel andfilename is the name of the file to be deleted.

Note: If you inadvertently SCRATCH a valuable file, you may be able to

recover it. For more information, see the direct-access programming section.

The Disk Drive 335

Renaming Files on a Diskette

Occasionally it is necessary to change the name of an existing (and properly

closed) file on a diskette. The BASIC RENAME command is

RENAMEDdrive,"old name"TO"newname"JJunit

where drive is the optional drive number (which is not needed on the 1541), old

name is the original name of the file, new name is the final name of the file, and

unit is the optional device number of the disk drive.

To rename a file by direct command to the DOS, use

PRUjT* filenumber,"B,:newname'old name"

wherefilenumber is the logical file number of the previously opened command

channel, and new name and old name are the final and original file names.

Copying Files on a Diskette

To create an exact duplicate of a file on the diskette, the COPY command is used.

The new copy must be on the same diskette and have a different name from the

original. Relative files cannot be copied with this command.

GOFYDdrive/'orig name"TODdrive,"copyname"9OTX Uuixzfc

where drive is the optional drive number (which is not needed on the 1541), orig

name is the name of the original file, copy name is the name of the copy, and unit

is the optional device number of the disk drive.

To copy a file by direct command to |he DOS, use

PRIET* filenumber,"C:copyname=origname"

wherefilenumber is the logical file number of the previously opened command

channel, and copy name and orig name are the names of the copy and the original

file.

Direct-Access Programming The DOS accepts nine commands in addition to

those already described. These commands allow the programmer to read and

write specific sectors on the diskette and to access the memory in the disk drive.

Remember that sectors you write directly onto the diskette do not normally

appear in the directory and are deallocated if the disk is validated (COLLECTed).

336 Using Peripheral Devices

Direct-access programming requires opening two channels to the disk drive.

The first is the command channel, which is opened with

OPEN fUenumber,device,lB

where Jilenumber is the logical file number to associate with the command

channel and device is the disk drive's device number. The second is a direct-access

channel, which is opened with

OPEN fUenumber,deviGe,chajmei;'#bu£fei/'

where filenumber is the logical file number to associate with the direct-access

channel, device is the disk drive's device number, and channel is a data channel to

use for direct access (2-14). The 1541 has several internal buffers. Four of these

are used for direct-access programming. You need not specify which one to use.

Alternatively, you may do so by using buffer equal to 0 through 3. The 1541

memory corresponding to each buffer is as follows:

Buffer 1541 Memory Used

0 $0300-$03FF

1 $0400-$04FF

2 $0500-$05FF

3 $0600-$06FF

Each channel opened must be closed, following its use, with

CLOSE filenumber

The diskette is organized into tracks and sectors. There are 35 tracks, num

bered 1 to 35, on a 1541 format diskette. The number of sectors within a track

varies according to the following:

Tracks Number ofSectors

1-17

18-24

25-30

31-35

21

19

18

17

The sectors are numbered starting with zero. Hence, for example, the sectors on

track 1 are numbered 0-20.

The Disk Drive 337

The status (allocated or free) of each sector is recorded in the BAM (Block

Availability Map) for the diskette. On a 1541 format disk the BAM is located on

track 18 in sector 0. The directory for the diskette starts on track 18 in sector 1.

Block Read (Ul)

The contents of the designated sector are read into a buffer in the disk drive by

this command. They can then be retrieved from the buffer with a GET#. The

syntax is

PRINT* filenumber,"'Ul:"channel;drive;track;sector

wherefilenumber is the logical file number of the command channel, channel is

the channel number of the direct-access channel, and drive is the drive number.

The track can be any track on the diskette (1 to 35) and the sector any sector of

that track.

The command B-R is also a block read command, but it occasionally malfunc

tions, so use Ul.

Example: 10 OPE1T15,8,15/T'

SO IFDSO0THENPRINTDS$:G0T0120

30 OPE]5ri,8,2,"#"

40 IFDSO0THElTPRI]SrTDS$:G0T01S0

50 PRH5TT"WHICH TRACK, SECTOR";:I1TPUTT,S

60 PRIFT#15,"TJ1:"2;O;T;S

70 IFDSO0THENPRIlTTDS$:G0T01S0

80 F0RI=0T0255

90 GET#1,A$
100 PRINTASC(A$),;

110 NEXT

120 CL0SEl:CL0SE15

Line-by-Line Explanation

10 Open the command channel (and initialize the disk).

20 Check for an error. If one is found, exit.

30 Open the direct-access channel.

40 Check for an error. If one is found, exit.

50 Ask user for desired track and sector.

60 Read desired sector into the buffer.

338 Using Peripheral Devices

70 Check for ah error. If one is found, exit.

80 I will count the bytes.

90 Get a byte from the buffer.

100 Print the value of the byte.

110 Go on to the next byte.

120 Close files.

Block Write (U2)

The data currently in the buffer of the 1541 can be written to any sector of the

diskette using this command. To fill the buffer with data, the PRINT# command

is used to the direct-access channel. The syntax of block write is

PRINTS filenumber/'TJZ:"channel;drive;track;sector

wherefilenumber is the logical file number of the command channel, channels

the channel number of the direct-access channel, and drive is the drive number.

The track can be any track on the diskette (1 to 35) and the sector any sector of

that track.

The command B-W is also a block write command, but it occasionally mal

functions, so use U2.

Example: This example should be run only on a formatted disk containing no information

you want to preserve. It writes data to the specified sector, and may overwrite

information which is already there.

10 0PEN15,8,15,"I"

20 IPDSO0THENPRI]SrTDS$:G0T0160

30 0PEm,8,2,"#"

40 IPDSO0THENPRINTDS$:G0T0160

50 PRINT"WHA^

60 PRIKTT#1,W$

70 PRIFT'WHICH TRACK, SECTOR";:INPUTT,S

80 PRINT#15/'TJ2:''2;0;T;S

90 IFDSO0THE]SrPRI]SrTDS$:G0T0160

100 PRIMT#15/'TJ1:"2;O;T;S

120 1=0

130 GET#1A$
140 PRIITTAf;

150 IFA$OCHR$(13)THENI=I+1:IFK256THEN130

i60 CLOSE1:CLOSE15

The Disk Drive 339

Line-by-Line Explanation

10 Open the command channel and initialize the disk.

20 Check for error. If one is found, exit.

30 Open the direct access channel.

40 Check for error. If one is found, exit.

50 Ask for a string to write.

60 Put the input string followed by a carriage return in the buffer of the 1541.

70 Ask which track and sector to use.

80 Write the buffer to the disk.

90 Check for error. If one is found, exit.

100 Read the sector back into the buffer.

110 Check for error. If one is found, exit.

120 I will count the bytes.

130 Get 1 byte from the buffer.

140 Output the byte to the screen.

150 If the byte is a carriage return, the end of the string has been reached.

Otherwise, go on to the next byte.

160 Close the files.

Block Allocate (B-A)

The BAM is a record of which sectors on the disk are in use. When a sector is

allocated, it is safe from being written on by the DOS in the course of normal

writing (such as a SAVE). It is not safe from being written on by the direct-access

commands, nor is it safe from being deallocated by a validate (COLLECT)

operation. The block allocate command updates the BAM to show the designated

sector as used. The BAM is actually written out to the disk when a direct-access

channel is closed, so it is a good idea to open and close a direct-access channel

when allocating a block, even if it is not needed for any other purpose. The syntax

for a block allocate is

PRINT* fUenumber;'B-A:";drive;track;sector

whereJilenumber is the logical file number of the command channel and drive is

the drive number. The track can be any track on the diskette (1 to 35) and the

sector any sector of that track.

340 Using Peripheral Devices

Example: This example should be run only on a formatted disk containing no information

you want to preserve. It allocates the desired block. Unless the block you specify

was already allocated, a DIRECTORY performed prior to running the program

shows one more free block than one performed after running the program.

10 0PEliri5,8,15,"I"

20 IFDSO0THEUPRI]SrTDS$:G0T080

30 OPEN1,8,2,"#"

40 IFDSO0THElSrPRINTDS$:G0T080

50 PRINT"WHICH TRACK, SECTOR";:INPUTT,S

60 PRINT#15/'B-A:'';0;T;S

70 IFDSOOTHENPRIITTDSI

80 CLOSE1:CLOSE15

Example:

Line-by-Line Explanation

10 Open the command channel and initialize the disk.

20 Check for error. If one is found, exit.

30 Open the direct access channel.

40 Check for error. If one is found, exit.

50 Ask which track and sector to use.

60 Allocate the specified sector.

70 Check for error. If one is found, exit.

80 Close the files.

Block Free (B-F)

The block free command updates the BAM to show the designated sector as not

used. The BAM is actually written out to the disk when a direct-access channel is

closed, so it is a good idea to open and close a direct-access channel when freeing a

block, even if it is not needed for any other purpose. The syntax for a block free is

PRINT* filenumber,"B-'F:";drive;track;seotor

wherefilenumber is the logical file number of the command channel and drive is

the drive number. The track can be any track on the diskette (1 to 35) and the

sector any sector of that track.

This example should be run only on a formatted disk containing no information

you want to preserve. It frees the desired block. Unless the block you specify was

The Disk Drive 341

not allocated, a DIRECTORY performed prior to running the program shows

one less free block than one performed after running the program.

10 0PEN15,8,15,"I"

20 IPDS<>0THElTPRI]SrTDS$:G0T080

30 OPE1T1,8,2,"#"

40 IPDSOOTHElTPRINTDSiiGOTOSO

50 PRINT//WHICHTI^CK,SECTOR//;:I]SrPUTT,S

60 PRI]STT#1S//B-F://;O;T;S

70 IPDSOOTHENPRIHTTDSI

80 CL0SEl:CL0SE15

Line-by-Line Explanation

10 Open the command channel and initialize the disk.

20 Check for error. If one is found, exit.

30 Open the direct access channel.

40 Check for error. If one is found, exit.

50 Ask which track and sector to use.

60 Free the specified sector.

70 Check for error. If one is found, exit.

80 Close the files.

Buffer Pointer (B-P)

The buffer pointer command designates the position in the 1541 buffer to access.

This command can be used before reading from the buffer to start GETting bytes

from a position other than the beginning of the buffer. B-P can be used before

writing to the buffer to start writing at a position other than the beginning. The

syntax for the buffer pointer command is

PRINT* filenumber,"B-P:";channel;position

wherefilenumber is the logical file number of the command channel and channel

is the channel number of the direct-access channel. The position can be any byte

in the buffer (0 to 255).

Example: This example reads the first sector of the directory, moves the buffer pointer to

the first byte of the first file name in the directory, and prints out the first file

name.

342 Using Peripheral Devices

10 0PENlB,8,lBfT

20 IPDS<>0THENPRIlTTDS$:G0T0130

30 0PE!Kri,8,2,"#"

40 IPDS<>0THEWPRIUTDS$:G0T0130

50 PRINT#15,''U1:''2;O;18;1

60 IPDSO0THENPRI]SrTDS$:G0T0130

70 PRINT#15,"B-P:";2;5

80 IFDS<>0THENPRIWTDS$:G0T0130

90 P0RI=0T015

100 GET#1,A$

110 PRINTA$;

120 NEXT

130 CL0SEl:CL0SE15

Line-by-Line Explanation

10 Open the command channel and initialize disk.

20 Check for error. If an error is present, exit.

30 Open a direct access channel.

40 Check for error. If an error is present, exit.

50 Read the first directory sector into the buffer.

60 Check for error. If an error is present, exit.

70 Place the buffer pointer at position 5 in the buffer, where the first file

name begins.

80 Check for error. If an error is present, exit.

90 I counts the 16 bytes reserved for the first file name.

100 Get a byte of the file name.

110 Print out the byte on the screen.

120 Go on to the next byte.

130 Close the files.

Block Execute (B-E)

This command reads the designated sector from the diskette into the buffer. It

then transfers program control of the 1541 processor to byte 0 of the buffer. This

execution continues until an RTS instruction is encountered. It is important to

understand that a subroutine executed in this way is addressing only memory in

the 1541; it is independent of the Plus/4. The syntax is

The Disk Drive 343

fUenximber"B-l£:"channel;drive;track;sector

wherefilenumber is the logical file number of the command channel, channel is

the channel number of the direct-access channel, and drive is the drive number.

The track can be any track on the diskette (1 to 35) and the sector any sector of

that track.

Example: This example should be run only on a formatted disk containing no information

you want to preserve. The program writes a short machine-language subroutine

onto sector 0 of track 1, then block executes that sector. The subroutine examines

the 1541's memory to determine which of its internal buffers (0 through 7) is being

used, stores this information in the buffer for the BASIC program's retrieval, and

returns.

10 OPEN15,8,15,"I"

20 IFDSO0THENPRINTDS$:GOTO160

30 OPEN1,8,2,"#"

40 IFDSO0THENPRINTDS$:QOTO160

50 PRINT#15,lfB-P:";2;0

60 FORI=0TO6:READN

70 PRINT#1,CHR$(N);

80 NEXT

90 PRINT#15,"U2:"2;0;1;0

100 IFDSO0THENPRINTDS$:GOTO160

110 PRINTS15,"B-E:";2;0;1;0

120 IFDSO0THENPRINTDS$:GOTO160

130 PRINTS15,"B-P:";2,-7

140 GET#1,A$

150 PRINT"USING BUFFER: ";ASC(A$)

160 CLOSE1:CLOSE15

170 DATA 160,7,165,249,145,48,96

Line-by-Line Explanation

10 Open the command channel and initialize the disk.

20 Check for error. If an error is present, exit.

30 Open a direct access channel.

40 Check for error. If an error is present, exit.

50 Set buffer pointer to byte 0.

60 I counts the bytes in the machine-language routine.

70 Put a byte in the buffer.

80 Go on to the next byte.

90 Write buffer out to track 1, sector 0.

344 Using Peripheral Devices

100 Check for error. If an error is present, exit.

110 Execute the machine code subroutine on track 1, sector 0.

120 Check for error. If an error is present, exit.

130 Position the buffer pointer to point at the data byte returned.

140 Retrieve the data byte (which buffer is in use).

150 Output the information.

160 Close the files.

170 The data are this machine code routine:

LDY #$07 Set .Y to point at location in buffer to store data.

LDA $>F9 Get the buffer in use from disk drive's zero page.

STA ($30),Y Store in location 7 of the buffer.

RTS Return from routine.

Memory Read (M-R)

The memory resident in the 1541 (both RAM and ROM) can be read into a buffer

with this command, 256 bytes at a time. The information can then be retrieved

from the buffer with GET# from the command channel. The syntax is

PRIlSrT# fiieiiumber/^

wherefilenumber is the logical file number of the command channel, ladd is the

low byte of the address to begin reading, hadd is the high byte of the address to

begin reading, and nbyt is the optional number of bytes to read (up to 255). If the

final parameter indicating the number of bytes is not included, 1 byte is read.

Example: 10 OPE1T15,8,15

SO IPDS<>0THEWPRIlSrTDS$:G0T080

30 PRINT#15//M-R"CHR$(183)CHR$(229)CHR$(17)

40 FORI=1TO17

50 GET#15,A$

60 PRIlTTCHR$(ASC(A$)Airoi27);

70 1TEXT

80 CLOSE15

Line-by-Line Explanation

10 Open the command channel.

20 Check for error. If an error is present, exit.

The Disk Drive 345

30 Execute a memory read to put the contents of locations $35B7-$35C7 of

the 1541's ROM into the buffer.

40 I counts the bytes read.

50 Get a byte from the buffer through the command channel.

60 Print out the character after stripping the high bit.

70 Go on to the next byte.

80 Close the command channel.

Memory Write (M-W)

This command allows information to be written into the RAM ofthe 1541. Up to

34 bytes at a time can be sent to the command channel for transmission. The

syntax is

PRINT#fiienumber^

wherefilenumber is the logical file number of the command channel, ladd is the

low byte of the address to begin writing, hadd is the high byte of the address to

begin writing, and nbyt is the number of the data bytes included (up to 34).

Example: In this example, whatever the user types in is stored in the 1541's RAM with a

memory write and retrieved with a memory read.

10 OPE1T15,8,15

20 IFDSO0THENPRINTDS$:G0T0110

30 PRINT^WHATTOWRITE'^rll^IJTWl

40 W$=LEFT$(W$,34):lT=LE]Sr(W$)

50 PRimi#15,//M-W//CHR$(0)CHR$(5)CHR$(]Sr)W$

60 PRIKTT#15,//M-R//CHR$(O)CHR$(5)CHR$(N)

70 PORI=1TON

80 GET#15,A$

90 PRINTAl;

100 NEXT

110 CLOSE15

Line-by-Line Explanation

10 Open the command channel.

20 Check for error. If an error is present, exit.

30 Ask user what to write.

346 Using Peripheral Devices

40 Take only the leftmost 34 bytes. N is the length.

50 Write this information into the 1541's RAM beginning at $0500.

60 Execute a memory read to put the contents of locations $0500-$0510 of

the 154l's RAM into the buffer.

70 I counts the bytes read.

80 Get a byte from the buffer through the command channel.

90 Print out the character.

100 Go on to the next byte.

110 Close the command channel.

Memory Execute (M-E)

This command transfers program control ofthe 1541 processor to the designated

address in the 154l's memory. This execution continues until an RTS instruction

is encountered. It is important to understand that a subroutine executed in this

way is addressing only memory in the 1541; it is independent of the Plus/4. The

syntax is

PRINT#flieiiumber//M-E:'/CHR$(Jad)CHRl|(iiadd)

wherefilenumber is the logical file number of the command channel, laddis the

low byte of the address to begin executing, and hadd is the high byte of the

address to begin executing.

Example: This example writes a short machine-language subroutine into a buffer in the

1541. This subroutine counts the number of active buffers and stores it in the

1541 's RAM for retrieval. The number of active buffers found can be changed by

opening some direct-access channels just before running the program.

10 0PEN15,8,15

SO IFDSO0THENPRINTDS$:G0T090

30 B$=////:F0RI=0T016:READIT:B$=B$+CHR$(]Sr):]SrEXT

40 PRI]SrT#15//M-W"CHR$(0)CHR$(5)CHR$(17)Bl|l;

50 PRINT#15//M-E//CHR$(0)CHR$(5)

60 PRINT#15//M-R//CHR$(S7)CHR$(0)

70 GET#15,A$

80 PRUTT^ITOMBER OP BUFFERS = *;ASC(A$)

90 CLOSE15

100 DATA 160,0,16S,6,181,167,S01,S55,S40,l,S00,g0S,16,S46,132,

27,96

The Disk Drive 347

Line-by-Line Explanation

10 Open the command channel.

20 Check for error. If an error is present, exit.

30 Construct a string containing the machine-language subroutine.

40 Write the subroutine into the 1541's memory at $0500.

50 Execute the machine-language subroutine.

60 Retrieve the saved count from the 1541's memory.

70 Get the count.

80 Print it out.

90 Close the command channel.

100 The data are this machine code routine:

$0500 LDY #$00 Count of active buffers found.

$0502 LDX #$06 Pointer to which buffer checking.

$0504 LDA $A7,X Get channel number of this buffer.

$0506 CMP #$FF Compare to inactive buffer value.

$0508 BEQ $050B If equal, skip next instruction.
$050A INY Increment the count.

$050B DEX Decrement the pointer.

$0500 BPL $0504 If not done, go back to get next the channel
number.

$050E STY" $1B Store count for BASIC program's retrieval.
$0510 RTS Return.

UnSCRATCHing a Disk File

When the disk drive is instructed to SCRATCH a file, it does not actually remove

the file's contents from the diskette. Instead, it changes a byte in the diskette's

directory to indicate that the file was SCRATCHed and deallocates all ofthe file's

sectors in the BAM.

If you discover that you have SCRATCHed an important file for which you

have no backup, you can sometimes recover the file. It is important to note that

this procedure is for EMERGENCIES only. This is NOT a recommended

procedure. It is far, far better to keep plenty ofbackup copies of all of your work.

If you must try it, please note the following:

1. Your chances of success are MUCH better if NOTHING has been written to

the diskette since the SCRATCH occurred. Do not try this procedure if you

performed disk write operations after the SCRATCH.

348 Using Peripheral Devices

2. The diskette is validated as part of this procedure. Any sectors used for direct

access will be deallocated as in any validate operation.

3. If possible, make copies of unaffected files you need from the diskette before

running this program.

10 DIMA$(255)

20 PORI=1TO16:S$=S$+CHR$(160):NEXT

30 SCNCLR:PRINT

40 PRINT"INSERT DISK CONTAINING FILE TO UNSCRATCH":PRINT

50 PRINT"PRESS ANY KEY WHEN DONE":PRINT

60 GETKEYK$

70 PRINT"INITIALIZING DISK":PRINT

80 OPEN15,8,15,"I"

90 GOSUB460

100 INPUT"FILE TO UNSCRATCH";F$

110 F$=LEFT$(F$+S$,16)

120 PRINT:PRINT"LOOKING FOR ";F$

130 OPENl,8r2,"#"

140 GOSUB460

150 T=18:S=1

160 PRINT#15,"U1:";2;0;T;S

170 GOSUB460

180 FORI=0TO255

190 GET#1,A$(I)

200 NEXT

210 F=0

220 B=32*F+4:FF$=""

230 FORI=1TO16

240 FF$=FF$+A$(B+I):NEXT

250 IFF$=FF$THEN300

260 F=F+1:IFF<8(THEN220

270 T=ASC(A$(0)):IFT=0THEN290

280 S=ASC(A$(1)):GOTO160

290 PRINT:PRINTF$;" NOT FOUND":GOTO450

300 PRINT:PRINT"FOUND ";F$

310 B=B-2

320 IFASC(A$(B))O0THENPRINT:PRINTF$;" IS NOT A SCRATCHED FILE":GOTO450

330 PRINT:PRINT"1 = SEQ, 2 = PRG, 3 = USR, 4 = REL"

340 INPUT"WHAT TYPE OF FILE";N%

350 IFN%<1ORN%>4THEN330

360 PRINT: INPUT"OKAY TO UNSCRATCH (Y/N)";K$

370 IFK$O"Y"THEN450

380 PRINT#15,"B-P:";2;B

390 PRINT#1,CHR$(128+N%);

400 PRINT#15,"U2:";2;0;T;S

410 GOSUB460

420 PRINT:PRINT"VALIDATING DISK"

430 PRINT#15,"V"

440 GOSUB460

450 CLOSE1:CLOSE15:END

460 IFDS=0THENRETURN

470 PRINTDS$:CLOSE1:CLOSE15:END

The Disk Drive 349

Line-by-Line Explanation

10 Dimension array to hold directory sector data.

20 Create a string of 16 shifted spaces.

30 Clear the screen and skip a line.

40-50 Print messages to user.

60 Wait for user to hit a key.

70 Print message to user.

80 Open the disk command channel, and initialize the disk.

90 Check for disk errors.

100 Get file name to unscratch.

110 Pad with shifted spaces.

120 Print message to user.

130 Open direct-access channel to disk drive.

140 Check for disk errors.

150 T is the current track; S is the current sector.

160 Read a directory sector into the disk buffer.

170 Check for disk errors.

180 Count the bytes from the disk buffer.

190 Get a byte.

200 Go on to the next byte.

210 F is the current file entry.

220 B is the base address for the current file name entry; start FF$ as a

null string.

230 I counts the bytes in the file name.

240 Concatenate each file name byte to FF$.

250 If FF$ is the file sought, go to line 300.

260 Add 1 to file count. If below 8 (not done with this sector), go on to

the next file entry.

270 Get the next directory track. If zero, then there are no more sectors,

so the file name was not found.

280 Get the next directory sector and return to line 160.

380 Using Peripheral Devices

290 Inform user that the file was not found and quit.

300 Inform user that the file was found.

310 Now, B points to the file type byte for the current file entry.

320 If the file is not scratched, inform the user and quit.

330-340 Determine the desired file type.

350 If not a valid input, repeat the question.

360 Final chance to bail out without affecting the disk.

370 If it is not a definite yes, quit.

380 Move the disk buffer pointer to the file type byte for the current file

entry.

390 Put the new file type byte into the disk buffer.

400 Write the disk buffer out to the disk.

410 Check for disk errors.

420 Print message to user.

430 Perform a validate function on the disk to update the BAM.

440 Check for disk errors.

450 Close the files and stop processing.

460 If no disk error, return.

470 Print out the error message, close the files, and quit.

Using a Disk Drive with Machine Language

All of the direct-access programming techniques described in the preceding

BASIC section are available in machine language. The function of the BASIC

commands described to open and use the command and direct-access channels

can be accomplished in machine code with the appropriate operating system

subroutines.

In general terms, you can choose from three levels of communication with the

disk drive. At the highest level are the save and load routines that perform all the

necessary functions to save or load a section of RAM from disk. The middle level

allows the maintenance of multiple open files, similar to OPEN commands in

BASIC. At the most fundamental level, it is possible to listen and talk to the disk

drive directly through the serial bus subroutines. Each of these levels is explored

and example programs are given in this section. The complete descriptions of the

operating system subroutines used can be found in Chapter 5.

The Disk Drive 381

Saving, Loading, and Verifying Files The key subroutines for saving and

loading sections of RAM are SAVESP ($FFD8) and LOADSP ($FFD5). Using

these routines is ideal for saving sections of memory into a disk file for later

retrieval. The routines automatically perform the appropriate operations on the

serial bus. The messages printed to the screen during these operations are con

trolled by the message flag set with SETMSG ($FF90).

Save

When a section of memory is saved to disk, a file name must be provided. The

name is 1 to 16 characters in length and must be stored in CHR$ codes in

ascending order somewhere in memory. The following outlines the operations

required:

1. Store the low and high bytes of the address at which the save is to begin into 2

consecutive bytes on zero page.

2. Load .X with the device number of the disk drive and call SETLFS ($FFBA).

3. Load .A with the length of the file name, .X with the low byte of the address at

which the name is stored, and .Y with the high byte of the address at which the

name is stored, and call SETNAM ($FFBD).

4. Load .A with the address of the zero page location in which the begin save

address is stored (see step 1 above). Load .X with the low byte of the address at

which to stop saving plus 1. Load.Y with the high byte of the address at which

to stop saving plus 1. Call SAVESP ($FFD8).

5. Check for errors by checking the carry status and the status variable and by

reading the disk error channel. The status variable can be loaded into .A with

READSS ($FFB7).

Load

When a file is to be loaded into memory, the file name by which it is known on the

diskette must be stored in CHR$ codes in ascending order somewhere in memory.

The following outlines the operations required:

1. Load .X with the device number of the disk drive. Load .Y with $00 for a

relocated load, or a nonzero value for a nonrelocated load. Call SETLFS

($FFBA).

2. Load .A with the length of the file name, .X with the low byte of the address at

which the name is stored, and.Y with the high byte of the address at which the

name is stored, and call SETNAM ($FFBD).

352 Using Peripheral Devices

3. Load .A with $00 to indicate a load. If it is to be a relocated load, load .X with

the low address to begin loading, and.Y with the high address to begin loading.

Call LOADSP ($FFD5).

4. Check for errors by checking the carry status and the status variable and by

reading the disk error channel. The status variable can be loaded into .A with

READSS ($FFB7). A normal load sets bit 6 of the status variable to 1,

meaning that the end-of-file was reached.

Verify

When a file is to be verified against memory, the file name by which it is known on

the diskette must be stored in CHR$ codes in ascending order somewhere in

memory. The following outlines the operations required:

1. Load .X with the device number of the disk drive. Load .Y with $00 for a

relocated verify, or a nonzero value for a nonrelocated verify. Call SETLFS

($FFBA).

2. Load .A with the length of the file name, .X with the low byte of the address at

which the name is stored, and.Y with the high byte of the address at which the

name is stored, and call SETNAM ($FFBD).

3. Load .A with $01 (or other nonzero value) to indicate a verify. If it is to be a

relocated verify, load .X with the low address to begin verifying and.Y with the

high address to begin verifying. Call LOADSP ($FFD5).

4. Check for errors by checking the carry status and the status variable and by

reading the disk error channel. The status variable can be loaded into .A with

READSS ($FFB7). A normal verify sets bit 6 of the status variable to 1,

meaning that the end-of-file was reached. A verify error sets bit 4 of the status

variable to 1 as well.

Example: ^This example program saves itself on disk, verifies the resulting file against itself,

' and performs a relocated load of the file. No call to SETMSG is made. If the

program is executed from the machine-language monitor, monitor messages are

printed to the screen. The program is in two parts, the main one at $2000 and a

routine to read the disk drive's error channel at $2080. Some CHR$ data are

required at memory locations $20F8 and $2100. It is shown after the program.

Low byte of the begin save address.

Store on zero page

High byte of the begin save address•

Store in next byte on zero page.

Device number of disk drive.

SETLFS.

Length of file name.

. 2000

. 2002

. 2004

. 2006

. 2008

. 200A

. 200D

A9

85

A9

85

A2

20

A9

00

D8

20

D9

08

BA

06

LDA

STA

LDA

STA

LDX

FF JSR

LDA

#$00
$D8

#$20

$D9

#$08

$FFBA

#$06

The Bisk Drive 353

Low byte of file name address.

High byte of file name address.

SETNAM.

Address of zero page location at $2003.

Low byte of end save address.

High byte of end save address.

SAVESP.

If error, read disk error channel.

Get status byte.

If error, read disk error channel.

To signal verify.

LOADSP. (All the other information was

already set).

If error, read disk error channel.

Get status byte.

Normal end-of-file.

If not, then go to error handler.

Device number of disk drive.

To indicate a relocated load.

SETLFS.

To signal load.

Low byte of address for load start.

High byte of address for load start.

LOADSP.

If error, read disk error channel.

Get status byte.

Normal end-of-file.

If not, read disk error channel.

Stop processing.

The contents of the X and Y register are the low and high bytes of the address of

the last byte loaded plus 1, if a normal exit is achieved.

200F

2011

2013

2016

2018

201A

201C

201F

2021

2024

2026

2028

202B

202D

2030

2032

2034

2036

2038

203B

203D

203F

2041

2044

2046

2049

204B

204D

A2

A0

20

A9

A2

A0

20

B0

20

D0

A9

20

B0

20

C9

D0

A2

A0

20

A9

A2

A0

20

B0

20

C9

D0

00

00

21

BD

D8

06

21

D8

5F

B7

5A

80

D5

53

B7

40

3C

08

00

BA

00

00

30

D5

3A

B7

40

33

FF

FF

FF

FF

FF

FF

FF

FF

LDX

LDY

JSR

LDA

LDX

LDY

JSR

BCS

JSR

BNE

LDA

JSR

BCS

JSR

CMP

BNE

LDX

LDY

JSR

LDA

LDX

LDY

JSR

BCS

JSR

CMP

BNE

BRK

#$00
#$21

$FFBD

#$D8

#$06

#$21

$FFD8

$2080

$FFB7

$2080

#$80

$FFD5

$2080

$FFB7

#$40

$2070

#$08

#$00

$FFBA

#$00

#$00

#$30

$FFD5

$2080

$FFB7

#$40

$2080

2070

2072

2074

2076

2079

207C

207D

207F

2080

2082

2084

2086

2089

208B

208E

2091

2093

2095

2098

C9

D0

A2

BD

20

CA

10

00

A9

A2

A0

20

A9

20

20

B0

A2

20

B0

50

0C

05

F8

D2

F7

0F

08

0F

BA

00

BD

C0

16

0F

C6

0F

20

FF

FF

FF

FF

FF

CMP

BNE

LDX

LDA

JSR

DEX

BPL

BRK

LDA

LDX

LDY

JSR

LDA

JSR

JSR

BCS

LDX

JSR

BCS

#$50

$2080

#$05

$20F8,X

$FFD2

$2076

#$0F

#$08

#$0F

$FFBA

#$00

$FFBD

$FFC0

$20A9

#$0F

$FFC6

$20A9

Look for verify error.

If not, read disk error channel.

Length of error message.

Get a byte of message.

Write it to the screen.

Point at next byte.

If more, go back.

Stop processing.

Logical file number to use.

Device number of disk drive.

Command channel.

SETLFS.

No file name.

SETNAM.

OPEN.

If an error is present, quit.

Logical file number of comnand channel

CHKIN.

If an error is present, quit.

354 Using Peripheral Devices

209A A9 0D LDA #$0D Carriage return character.

209C 20 D2 FF JSR $FFD2 Send to screen.

209F 20 CF FF JSR $FFCF Get a character from command channel.

20A2 20 D2 FF JSR $FFD2 Send to screen.

20A5 C9 0D CMP #$0D Compare to carriage return.

20A7 D0 F6 BNE $209F If not, get another byte.

20A9 A9 0F LDA #$0F Logical file number of command channel.

20AB 20 C3 FF JSR $FFC3 CLOSE.

20AE 20 CC FF JSR $FFOC CLRCH.

20B1 00 BRK Stop processing.

The following data need to be placed in memory:

>20P8 52 4F 52 52 45 20 00 00 :PRORRE..1
>2100 53 41 56 50 52 47 00 00 :1SAVPRG..|

Using Data Files This section outlines the machine-language equivalents for

the BASIC statements OPEN, CLOSE, GET#, and PRINT#. They can be used

for all the purposes outlined in the preceding BASIC sections, including data-file

handling and direct-access programming. The key subroutines are OPEN

(SFFCD), CLOSE (SFFC3), CHKIN (SFFC6), CHOUT (SFFC9), CLRCH

(SFFCC), BASIN (SFFCF), and BSOUT (SFFD2). Any messages printed to the

screen during these operations are controlled by the message flag set with

SETMSG ($FF90).

Open

When a file is to be opened, and a file name must be provided, the name (1 to 16

characters) and the type of file and mode (see the BASIC section on OPENing

data files) must be stored in CHR$ codes in ascending order somewhere in

memory. Exactly the same situation exists as in BASIC. That is, if the type and

mode are omitted, the mode is assumed to be read, and the type is the existing

type of the file. A direct-access channel can be opened by using a pound sign for

the file name. The following outlines the operations required:

1. Load .A with the logical file number to use for the file, .X with the device

number of the disk drive, and .Y with the channel number. Call SETLFS

($FFBA).

2. Load .A with the length of the file name (0 if no name), .X with the low byte of

the address where the file name is stored, and .Y with the high byte of the

address where the file name is stored. Call SETNAM ($FFBD).

3. Call OPEN ($FFC0).

4. Check for errors by examining the carry bit and the disk error channel. The

status byte is not particularly useful for discovering OPEN errors.

The Disk Drive 388

Close

Files can be closed individually with the CLOSE ($FFC3) routine:

1. Load .A with the logical file number of the file to be closed. Call CLOSE

($FFC3).

2. Check for errors by examining the carry bit, status byte, and disk error

channel. Generally, checking the carry bit and disk error channel is sufficient.

All the files in use can be closed and the input and output channels reset to their

default devices by calling CLALL ($FFE7).

Print

To send information into a file, it must have been opened with a mode of write.

The following outlines the operations required:

1. Load .X with the logical file number of the output file. Designate it as the

output channel by calling CHOUT ($FFC9).

2. Check for errors.

3. Send the data to the channel with BSOUT ($FFD2).

4. When all data has been sent, return the input and output channels to default

(keyboard and screen) by calling CLRCH ($FFCC) and close the file. Or call

CLALL ($FFE7) to close all files and reset the input and output channels.

Get

To receive information from a file, it must have been opened with a mode of

read (no mode defaults to read). The following outlines the operations required:

1. Load .X with the logical file number of the input file. Designate it as the input

channel by calling CHKIN ($FFC6).

2. Check for errors.

3. Receive the data from the channel with BASIN ($FFCF).

4. When all data has been received, return the input and output channels to

default (keyboard and screen) by calling CLRCH ($FFCC) and close the file.

Or call CLALL ($FFE7) to close all files and reset the input and output

channels.

Example: This example opens a new file called DATFIL and writes data accepted from the

keyboard to it. It then closes the file, reopens it for reading, and retrieves the data,

356 Using Peripheral Devices

displaying it on the screen. Because no call is made to SETMSG, machine-

language monitor error messages are displayed if the program is executed from

the monitor.

2000

2002

2004

2006

2009

200B

200D

200F

2012

2015

2017

201A

201C

201F

2021

2024

2026

2029

202C

202E

2030

2033

2035

2038

203A

203D

203F

2041

2043

2046

2048

204A

204C

204F

2052

2054

2057

2059

205C

205E

2061

2064

2067

2069

206C

206E

A9

A2

A0

20

A9

A2

A0

20

20

B0

20

A9

20

A2

20

B0

20

20

C9

D0

20

A9

20

B0

20

A9

A2

A0

20

A9

A2

A0

20

20

B0

20

A2

20

B0

20

20

20

F0

20

A9

20

02

08

02

BA

0A

00

21

BD

C0

5F

A0

0D

D2

02

C9

50

CF

D2

0D

F6

CC

02

C3

3C

A0

02

08

02

BA

06

00

21

BD

C0

22

A0

02

C6

18

CF

D2

B7

F5

CC

02

C3

FF

FF

FF

20

FF

FF

FF

FF

FF

FF

20

FF

FF

FF

20

FF

FF

FF

FF

FF

FF

LDA

LDX

LDY

JSR

LDA

LDX

LDY

JSR

JSR

BCS

JSR

LDA

JSR

LDX

JSR

BCS

JSR

JSR

CMP

BNE

JSR

LDA

JSR

BCS

JSR

LDA

LDX

LDY

JSR

LDA

LDX

LDY

JSR

JSR

BCS

JSR

LDX

JSR

BCS

JSR

JSR

JSR

BEQ

JSR

LDA

JSR

#$02

#$08

#$02

$FFBA

#$0A

#$00

#$21

$FFBD

$FFC0

$2076

$20A0

#$0D

$FFD2

#$02

$FFC9

$2076

$FFCF

$FFD2

#$0D

$2026

$FFOC

#$02

$FFC3

$2076

$20A0

#$02

#$08

#$02

$FFBA

#$06

#$00

#$21

$FFBD

$FFC0

$2076

$20A0

#$02

$FFC6

$2076

$FFCF

$FFD2

$FFB7

$205E

$FFCC

#$02

$FFC3

Logical file number for data file.

Device number of disk drive.

Channel number to use.

SETLFS.

Length of file name.

Low byte of address of file name.

High byte of address of file name.

SETNAM.

OPEN.

Check for I/O errors.

Check the disk error channel.

Carriage return character.

Send to the screen.

Logical file number for data file.

Set up as the output channel.

Check for I/O errors.

Receive input from keyboard.

Send to file.

Check if received carriage return.

If not, continue.

Return I/O channels to defaults.

Logical file number for data file.

Close the file.

Check for I/O errors.

Check disk error channel.

Logical file number to be used for data

file.

Device number of disk drive.

Channel number to use.

SETLFS.

Length of file name (no longer use ,S,W

part).

Low byte of address of file name.

High byte of address of file name.

SETNAM.

OPEN.

Check for I/O errors.

Check disk error channel.

Logical file number of data file.

Set up as the input channel.

Check for I/O errors.

Get a character from the file.

Put it on the screen.

Read the status byte.

If zero, not at end-of-file so continue.

Return I/O channels to defaults.

Logical file number of data file.

Close the file.

The Disk Drive 3S7

2071 B0 03 BCS $2076

2073 20 A0 20 JSR $20A0

2076 20 E7 FF JSR $FFE7

2079 00 BRK

Check for I/O errors.

Check the disk error channel.

Make sure all files are closed.

Stop processing.

The following subroutine reads the disk error channel. If two zero characters

are received, then there is no error, and it exits. If not, the message is displayed,

the files are closed, and the stack pointer is restored to its proper value. Processing

is then stopped.

. 20A0 A9 01 LDA #$01

. 20A2

. 20A4

. 20A6

. 20A9

. 20AB

. 20AE

. 20B1

. 20B3

. 20B5

. 20B8

. 20BA

. 20BD

. 20BF

. 20C1

. 20C4

. 20C6

. 20C8

. 20CA

. 20CD

. 20CF

. 20D2

. 20D3

. 20D6

. 20D9

. 20DB

. 20DE

. 20E1

• 20E4

. 20E6

. 20E8

. 20EB

. 20EC

. 20ED

A2

A0

20

A9

20

20

B0

A2

20

B0

20

C9

D0

20

C9

D0

A9

20

B0

20

60

20

20

A9

20

20

20

C9

D0

20

68

68

00

08

0F

BA

00

BD

C0

35

01

C6

2E

CF

30

12

CF

30

0E

01

C3

19

CC

CF

CF

0D

D2

CF

D2

0D

F6

E7

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

LDX

LDY

JSR

LDA

JSR

JSR

BCS

LDX

JSR

BCS

JSR

CMP

BNE

JSR

CMP

BNE

LDA

JSR

BCS

JSR

RTS

JSR

JSR

LDA

JSR

JSR

JSR

CMP

BNE

JSR

PLA

PLA

BRK

#$08

#$0F

$FFBA

#$00

$FFBD

$FFC0

$20E8

#$01
$FFC6

$20E8

$FFCF

#$30

$20D3

$FFCF

#$30

$20D6

#$01
$FPC3

$20E8

$FFCC

$FFCF

$FFCF

#$0D

$FFD2

$FFCF

$FFD2

#$0D

$20DE

$FFE7

Logical file number to use for command

channel.

Device number of disk drive.

Command channel.

SETLFS.

No file name required.

SETNAM.

OPEN.

Check for I/O errors.

Logical file number of channel.

Set up as input channel.

Check for I/O errors.

Get a character.

Compare to a zero character.

If not, there is an error.

Get a character.

Compare to a zero character.

If not, there is an error.

Logical file number of channel.

Close the file.

Check for I/O errors.

Return I/O channels to defaults.

Return from subroutine with no error.

Get a character.

Get a character.

Carriage return character.

Send to screen.

Get a character from the error channel.

Send to screen.

Compare to a carriage return.

If not, continue.

Close down all files and restore I/O

channels•

Pull the return address off the stack.

Stop processing.

The file name must be in memory at $2100.

>S1OO 44 41 54 46 49 40 SC 53 :

>S108 2C 57 00 00 00 00 00 00 :

358 Using Peripheral Devices

Programming the SerialBus Occasionally it is desirable to program directly to

the serial bus. The family of operating subroutines used for this purpose consists

of LISTN ($FFB1), SECND ($FF93), CIOUT (SFFA8), UNLSN ($FFAE),

TALK ($FFB4), TKSA ($FF96), ACPTR ($FFA5), and UNTLK (SFFAB).

Programming at this level eliminates the file structure used with OPEN and

CLOSE. Instead of thinking in terms of logical file numbers, think in terms of the

channels of the disk drive. A channel may be opened and told to send data to the

computer (to talk) or to receive data from the computer (to listen). The error

checking must be done using the status variable for device not present, end-of-file,

and such, and by reading the error channel. When these operations are done

depends to a large extent on what assumptions the particular application allows.

When in doubt, check for an error.

Opening a File

Here is an outline of a procedure:

1. Set the status variable ($90) to zero.

2. Load .A with the device number of the disk drive (and store in the current

device number at $AE if this has not already been done). Call LISTN ($FFB1).

Check for a device not present error in the status variable.

3. Load .A with the disk drive channel number you want to use ORed with $F0

(to indicate open up this channel). Call SECND ($FF93).

4. Send the file name (if any) through .A to the drive using CIOUT ($FFA8).

5. Call UNLSN ($FFAE).

The channel specified is now opened to the file specified.

Getting Data from an Open Channel

1. Load .A with the device number of the disk drive and call TALK ($FFB4).

2. Load .A with the channel number ORed with $60 (to tell the drive this is a

secondary address). Call TKSA ($FF96).

3. Call ACPTR ($FFA5) to receive bytes in .A. When bit 6 of the status variable is

set, the end-of-file has been reached.

4. Call UNTLK (SFFAB).

Sending Data to an Open Channel

1. Load .A with the device number of the disk drive and call LISTN (SFFB1).

2. Load .A with the channel number ORed with $60 (to tell the drive this is a

secondary address). Call SECND ($FF93).

The Disk Drive 359

3. Call CIOUT ($FFA8) to send bytes from .A.

4. Call UNLSN ($FFAE).

Example:

Closing a File

1. Load .A with the device number of the disk drive. Call LISTN ($FFB1).

2. Load .A with the disk drive channel number you want to close ORed with $E0

(to indicate close this channel). Call SECND ($FF93).

3. Call UNLSN ($FFAE).

This example reads the first sector of the directory of a diskette and places it in

memory. Errors are detected and acted on, but no user interface is in place to

deliver error messages to the user.

2000

2002

2004

2006

2008

200B

200E

2010

2012

2015

2017

201A

201D

201F

2022

2024

2027

2029

202C

202F

2030

2032

2034

2037

2039

203C

203E

2041

2043

2046

2049

204A

204D

204F

2052

2055

A9

85

A9

85

20

20

D0

A9

20

A9

20

20

A9

20

A9

20

A2

BD

20

E8

E0

90

20

A9

20

A9

20

A2

20

9D

E8

20

F0

20

AD

0D

00

90

08

AE

Bl

B7

7B

F2

93

23

A8

AE

08

Bl

FF

93

00

00

A8

0B

F5

AE

08

B4

6F

96

00

A5

00

B7

F4

AB

00

01

FF

FF

FF

FF

FF

FF

FF

21

FF

FF

FF

FF

FF

23

FF

FF

23

23

LDA

STA

LDA

STA

JSR

JSR

BNE

LDA

JSR

LDA

JSR

JSR

LDA

JSR

LDA

JSR

LDX

LDA

JSR

INX

CPX

BCC

JSR

LDA

JSR

LDA

JSR

LDX

JSR

STA

INX

JSR

BEQ

JSR

LDA

ORA

#$00

$90

#$08

$AE

$FFB1

$FFB7

$208B

#$F2

$FF93

#$23

$FFA8

$FFAE

#$08

$FFB1

#$FF

$FF93

#$00

$2100,X

$FFA8

#$0B

$2029

$FFAE

#$08

$FFB4

#$6F

$FF96

#$00
$FFA5

$2300,X

$FFB7

$2043

$FFAB

$2300

$2301

Clear the status variable.

Disk drive device number.

Store in the current device number.

Tell drive to listen.

Read status variable.

If not zero, then error.

Open command for channel 2.

Send as secondary address to drive.

This is the code for a pound sign (#)

Open a direct-access channel.

Tell drive to stop listening.

Disk drive device number.

Tell drive to listen.

Open command for channel 15.

Send as secondary address to drive.

.X counts bytes to send.

Get a byte of the Ul command.

Send to the drive.

Increment count.

Compare to length of Ul command.

Not done, continue sending.

Tell drive to stop listening.

Disk drive device number.

Tell drive to talk.

Access conmand channel (for errors).

Send as secondary address to drive.

.X counts the bytes received.

Receive a byte from the drive.

Store in error buffer.

Increment byte count.

Read status variable.

If zero, more to receive so go back.

Tell drive to stop talking.

Get first byte of error buffer.

OR with the second byte.

360 Using Peripheral Devices

2058

205A

205C

205E

2061

2063

2066

2068

206B

206E

206F

2071

2074

2076

2079

207B

207E

2081

2083

2086

2088

208B

208E

C9

D0

A9

20

A9

20

A2

20

9D

E8

D0

20

A9

20

A9

20

20

A9

20

A9

20

20

00

30

18

08

B4

62

96

00

A5

00

F7

AB

08

Bl

E2

93

AE

08

Bl

EF

93

AE

FF

FF

FF

22

FF

FF

FF

FF

FF

FF

FF

CMP

BNE

LDA

JSR

LDA

JSR

LDX

JSR

STA

INX

BNE

JSR

LDA

JSR

LDA

JSR

JSR

LDA

JSR

LDA

JSR

JSR

BRK

#$30

$2074

#$08

$FFB4

#$62

$FF96

#$00

$FFA5

$2200,X

$2068

$FFAB

#$08

$FFB1

#$E2

$FF93

$FFAE

#$08

$FFB1

#$EF

$FF93

$FFAE

If no error, the result will be $30.

If not, error has been detected so quit.

Disk drive device number.

Tell drive to talk.

Access data channel (to get results of

Ul).

Send as- secondary address to drive.

.X counts the bytes received.

Receive a byte from the drive.

Store in directory buffer.

Increment byte count.

Get one whole sector.

Tell drive to stop talking.

Disk drive device number.

Ttell drive to listen.

Close command for channel 2.

Send as secondary address to drive.

Tell drive to stop listening.

Disk drive device number.

Tell drive to listen.

Close command for channel 15.

Send as secondary address to drive.

Tell drive to stop listening.

Stop processing.

The Ul command is stored as data.

>2100

>2108

55 31 3A 32 2C 30 20 31 : |U1:2,O,1|
38 2C 31 00 00 00 00 00 :18,1 |

The Datassette Tape Recorder

The Datassette is a specialized tape recorder for use with Commodore computers

only. The Datassette designed for use with the Plus/4 is called the 1531. A

Datassette can be used to store and retrieve programs and data. Working with

tape is slow, and the capacity of even the longest recommended tape (30 minutes)

is limited. However, cassette tapes are not as easily destroyed as diskettes (in the

mail or in the hands of young children). The Datassette is also much less

expensive than a disk drive, and cassette tapes are cheaper than diskettes. For the

lower-budget computer user, or a beginnerjust starting to program, a Datassette

may be a good investment.

Files on tape can, but need not, be identified with names. It is generally a good

idea to give every file on a tape a name unless only one file is to be stored on the

tape. When you access a tape file, the computer begins searching the tape from

wherever it is sitting. In other words, the computer does not rewind the tape, so

you must be careful to position the tape before you ask the computer to access a

file.

The Datassette Tape Recorder 361

Usually, it is best to simply give every file a name and always access a file using

its name. Then, always rewind the tape completely before you ask for a file. It may

sometimes be convenient to use the tape counter on the Datassette to position the

tape. Remember to reset the counter to 000 after you rewind the tape. Remember,

too, that the counter is only approximate. Fast forward to a position before the

exact position where the file is expected to start and then access the file by name.

Whenever the Datassette is being accessed, the screen is blanked. This is done

to speed up tape access by eliminating the time taken by the computer to manage

the screen display.

Using a Datassette with BASIC

The Datassette can be used to save BASIC programs or to create and retrieve

data files through BASIC. Errors, end-of-files, and end-of-tape marks can be

detected by examining the status variable, ST. The status variable does NOT

detect hardware problems such as failure to press the record button when you

attempt to create a file, reaching the physical end of a tape prior to completing the

file, and so on. For this reason, it is a good idea to check that programs are saved

properly by using the VERIFY command and to include verifying code in

programs that create data files.

ST for the Datassette

Bit

0

1

2

3

4

5

6

7

Meaning

Unused

Unused

Short block

Long block

Read or verify error

Checksum error

End-of-file mark encountered

End-of-tape mark encountered

An additional location of interest when working with the Datassette is 64784

($FD10). Bit 2 of this location can be used to detect whether or not a button is

pushed down on the Datassette. It does not distinguish between the buttons. The

statement

WAIT 64784,4

waits until no button is down. The statement

368 Using Peripheral Devices

WAIT 64784,4,4

waits until a button is down.

Saving, Loading, and Verifying Programs Because one of the main uses for a

Datassette is to save and retrieve BASIC programs, BASIC has built-in com

mands to make it easy. Saving programs can be done with the SAVE command:

SAVE filename,device,EOT/file type flag

Thefilename is the optional name by which the file is known on the tape. It can be

up to 17 characters in length. The device is the optional device number for the

Datassette (1). If the file name is omitted, the program is saved with no name. The

EOTIfile typeflag can be omitted (and default to 0) or have values 0-3. If it is 1,

the file cannot be relocated on subsequent LOADs. If it is 2, an end-of-tape

(rather than an end-of-file) marker is written on the tape after the file. A value of

3 enables both features, and 0 disables both.

To retrieve the program, the LOAD command can be used:

LOAD filename,devlce,absolute/relative flag

The filename is the same one used to save the program, and the device is the

optional device number for the Datassette (1). The absoluteI relativeflag is also

optional. If it is omitted or 0, the file is loaded as a BASIC program starting at the

beginning of BASIC RAM. If it is 1, the file will be loaded at the location from

which it was saved. This flag is overridden if the file was SAVEd as a nonrelocat-

able file as described previously. If the file name is included, the computer begins

reading the tape and continues until it finds a file with the specified name (or an

end-of-tape mark, which results in a BREAK error). If the file name is omitted,

the first file found is loaded. Every time the computer finds a file, it prints to the

screen:

POUND filename

and pauses. To hurry it along, you can press the 88 key. To interrupt a tape

operation at any time, you can press the STOP key.

To compare a program in memory with one stored on tape without altering

memory, the VERIFY command can be used. It reports if the file is not identical

to the program in memory.

VERIFY filename,device,absolute/relative flag

All of the parameters are the same as for LOAD.

The Datassette Tape Recorder 363

The VERIFY command is also useful when you want to position the tape

beyond the last file recorded on it. After you rewind the tape, request a VERIFY

of the last file on the tape. Of course, a VERIFY ERROR is reported (unless the

last file is identical to the program in memory). But the tape is positioned just

after the file, ready for a new file to be recorded.

Using Data Files A data file on tape consists of a long series of bytes stored on

the tape. It can be identified with a name and is concluded with an end-of-file (or

end-of-tape) mark. The purpose for which the file is being accessed must be given

in the secondary address sent with the OPEN statement:

OPEN filenumber,1,secondary,filename

Thefilenumber is the logical file number to be associated with this file. It is for

reference purposes only and can be 0-127 (128-255 will send a linefeed character

following every carriage return). The secondary address specifies the use of the

file. If it is 0 (or omitted), the file is read. If it is 1, the file is written and ended with

an end-of-file. If it is 2, the file is written and ended with an end-of-tape. The last

parameter is the file name (a string expression up to 17 characters).

After the file is open, output may be directed to it by referring to its logical file

number in a PRINT# or CMD command. Input may be received from it by

referring to its logical file number in a INPUT# or GET# command.

When the input to or output from a file is complete, the file must be closed with

CLOSE filenumber

wherefilenumber is the logical file number of the file to close.

After a file is opened for writing, each byte that is sent to it is stored sequen

tially on the tape. The format of the bytes written to a tape file must be designed

with the method of retrieval in mind. If they are to be read one at a time using the

GET# command, any format is all right. However, if they are to be read using the

INPUT# command, care must be taken to store comma characters between

values and carriage return characters between lines of input.

Example: 10 G0SUB130

SO OPEN"l,l,l,"nATFIL"

30 PRIlTTCHR$(13)//WHATT0ST0RE//;:I]SrPUTA$

40 PRI1TT#1,A$

SO CLOSE1

60 G0SUB130

70 PJEtINT"REWIlTD THE TAPE":WAIT64784,4,4

80 PRHSTT^WHEU D01TE, ";:G0SUB130

90 0PEITl,l,0,"DATFIL"

364 Using Peripheral Devices

100 INPUT#1,B$

110 IFAOBTHElirPRINTCHR$(13)"VERIFY ERROR"

120 CL0SEl:PRINTCHR$(13):G0SUB130:END

130 IP(PEEK(64784)A1TD4)=OTHENPRINT//HIT STOP ON

DATASSETTE":WAIT64784,4

140 RETURN

Line-by-Line Explanation

10 Make sure no buttons are pressed on Datassette.

20 Open a data file for writing.

30 Get some input to record.

40 Output the string to the Datassette.

50 Close the file.

60 Make sure no buttons are pressed on Datassette.

70 Tell the user to rewind the tape, and wait for the button to be down.

80 Make sure no buttons are pressed on Datassette.

90 Open the file for reading.

100 Get the string from the Datassette.

110 Compare it with the string typed in by the user, and report error.

120 Close the file and make sure no buttons are pressed.

130 If a button is down, print a message, and wait until none are down.

140 Return to main program.

Using a Datassette from Machine Language

In general terms, you can choose one of two levels of communication when you

use the Datassette. At the higher level are the save and load routines that perform

all the necessary functions to save or load a section ofRAM from disk. The lower

level allows the maintenance of an open file on the Datassette in addition to other

open files, similar to using OPEN commands in BASIC. These levels are explored

and example programs are given in this section. The complete descriptions of the

operating system subroutines used can be found in Chapter 5.

Saving, Loading, and Verifying Files The key subroutines for saving and

loading sections ofRAM are SAVESP ($FFD8) and LOADSP ($FFD5). These

The Datassette Tape Recorder 365

Example:

routines are ideal for saving sections of memory into a tape file for later retrieval.

They automatically perform the appropriate operations on the Datassette. The

messages printed to the screen during these operations are controlled by the

message flag set with SETMSG ($FF90).

Save

When a section of memory is saved to tape, a file name may be provided. The

name is 1 to 17 characters long and must be stored in CHR$ codes in ascending

order somewhere in memory. The following outlines the operations required:

1. Store the low and high bytes of the address at which the save is to begin into

two consecutive bytes on zero page.

2. Load .X with $01 (the device number of the Datassette). Load .Y with the

desired secondary address ($00-$03). If it is $01, the file cannot be relocated on

subsequent LOADs. If it is $02, an end-of-tape (rather than an end-of-file)

marker is written on the tape after the file. If it is $03, both of the features are

enabled. If it is $00, neither of them are in force. Call SETLFS ($FFBA).

3. Load .A with the length of the file name ($00 if none), .X with the low byte of

the address at which the name is stored, and.Y with the high byte ofthe address

at which the name is stored, and call SETNAM ($FFBD).

4. Load .A with the address of the zero page location in which the begin save

address is stored (see step 1 above). Load .X with the low byte of the address at

which to stop saving plus 1. Load.Y with the high byte of the address at which

to stop saving plus 1. Call SAVESP ($FFD8).

5. Check for errors by checking the carry status and the status variable. The status

variable can be loaded into .A with READSS ($FFB7).

This program saves itself on tape. It is in three parts: the save routine, the error

message routine, and data for the error message and file name.

. 2000 A9 00

. 2002 85 D8

. 2004 A9 20

. 2006 85 D9

. 2008 A2 01

. 200A A0 00

LDA #$00

STA $D8

LDA #$20

STA $D9

LDX #$01

LDY #$00

. 200C 20 BA FF JSR $FFBA

. 200F A9 06 LDA #$06

.2011 A2 00 LDX #$00

. 2013 AO 21 LDY #$21

. 2015 20 BD FF JSR $FFBD

Low byte of address to save from.

Store on zero page.

High byte of address to save from.

Store on zero page.

Device number for Datassette.

Secondary address for standard file.

SETLFS.

Length of file name.

Low byte of address of the file name.

High byte of address of the file name.

SETNAM.

366 Using Peripheral Devices

. 2018 A9 D8

. 201A AS 06

LDA #$D8

LDX #$06

. 201C A0 21 LDY #$21

. 20IE 20 D8 FP JSR $PFD8

. 2021 BO 5D BCS $2080

. 2023 20 B7 FP JSR $FFB7

. 2026 DO 58 B1O3 $2080

2028 00 BRK

Location of save from address.

Low byte of the address to save to

plus 1.

High byte of the address to save to

plus 1.

SAVESP.

Carry set indicates error.

Get the status byte.

If there is an error, put out error

message.

Stop processing.

The following routine prints the word ERROR to the screen:

2080 A2 06 LDX #$06 Length of the word.

2082 BD F8 20 LDA $20F8,X Get a charcter of the message.

2085 20 D2 PP JSR $PFD2 Send to the screen.

2088 CA DEX Decrement the character counter.

2089 10 F7 BPL $2082 If not done, continue.

208B 00 BRK . Stop processing.

These data are for the message and file name:

>20F8

>2100

Load

52 4P 52 52 45 OD 20 20

53 41 56 50 52 47 00 00

When a file is to be loaded into memory, the file name by which it is known on the

tape may be stored in CHR$ codes in ascending order somewhere in memory. If

no file name is specified, the next file found on the tape will be loaded. The

following outlines the operations required:

1. Load .X with $01 (the device number of the Datassette). Load .Y with $00 for a

relocated load, or a nonzero value for a nonrelocated load. This flag is

overridden if the file was SAVEd as a nonrelocatable file, as described pre

viously. Call SETLFS ($FFBA).

2. Load .A with the length of the file name ($00 if none), .X with the low byte of

the address at which the name is stored, and.Y with the high byte of the address

at which the name is stored, and call SETNAM ($FFBD).

3. Load .A with $00 to indicate a load. If it is to be a relocated load, load .X with

the low address to begin loading and.Y with the high address to begin loading.

Call LOADSP ($FFD5).

The Datassette Tape Recorder 367

4. Check for errors by checking the carry status and the status variable. The status

variable can be loaded into .A with READSS ($FFB7).

Example: This example does a relocated load of the file created in the previous example.

Device number of the Datassette.

Signal a relocated load.

SETLFS.

Length of the file name.

Low byte of address of the file name.

High byte of address of the file name.

SETNAM.

Signal load.

Low byte of the load address.

High byte of the load address.

LOADSP.

Carry set indicates error.

Read the status byte.

If an error is detected, send out

message.

Stop processing.

This routine sends the word ERROR to the screen:

2080 A2 06 LDX #$06 Length of the word.

S082 BD F8 20 LDA $20F8,X Get a character of the message.

2085 20 D2 FP JSR $FFD2 Send to the screen.

2088 CA DEX Decrement the count.

2089 10 F7 BPL $2082 If not done, continue.

. 2000

. soos

. 2004

. 2007

. S009

. 200B

. 200D

. 2010

. 2012

. 2014

. 2016

. 2019

. 201B

. 201E

. 2020

A2

AO

20

A9

A2

AO

20

A9

A2

AO

20

BO

20

DO

00

01

00

BA

06

00

21

BD

00

00

30

D5

65

B7

60

FF

PF

FF

FF

LDX

LDY

JSR

LDA

LDX

LDY

JSR

LDA

LDX

LDY

JSR

BCS

JSR

BITE

BRK

#$01

#$oo

$FFBA

#$06

#$oo

#$21

$FFBD

#$oo

#$oo

#$30

$FFD5

$2080

$FFB7

$2080

208B 00 BRK Stop processing.

>20F8 52 4F 52 52 45 OD 20 20

>2100 53 41 56 50 52 47 00 00

Verify

When a file is to be verified against memory, the file name by which it is known on

the tape may be stored in CHR$ codes in ascending order somewhere in memory.

If it is omitted, the first file found on the tape is used. The following outlines the

operations required:

1. Load .X with $01 (the device number ofthe Datassette). Load .Y with $00 for a

relocated verify, or a nonzero value for a nonrelocated verify. This flag is

368 Using Peripheral Devices

overridden if the file was SAVEd as a nonrelocatable file, as described pre

viously. Call SETLFS (SFFBA).

2. Load .A with the length of the file name ($00 if none), .X with the low byte of

the address at which the name is stored, and .Y with the high byte of the address

at which the name is stored, and call SETNAM ($FFBD).

3. Load .A with $80 to indicate a verify. If it is to be a relocated verify, load .X

with the low address to begin verifying and .Y with the high address to begin

verifying. Call LOADSP ($FFD5).

4. Check for errors by checking the carry status and the status variable. The status

variable can be loaded into .A with READSS ($FFB7). A verify error sets bit 4

of the status variable to 1.

Using Data Files This section outlines the machine-language equivalents for

the BASIC statements OPEN, CLOSE, GET#, and PRINT#. They can be used

for data file handling. The key subroutines are OPEN ($FFC0), CLOSE

($FFC3), CHKIN ($FFC6), CHOUT ($FFC9), CLRCH ($FFCC), BASIN

($FFCF), and BSOUT ($FFD2). Any messages printed to the screen during these

operations are controlled by the message flag set with SETMSG ($FF90).

Open

When a file is to be opened, and a file name is to be provided, the name (1 to 17

characters) must be stored in CHR$ codes in ascending order somewhere in

memory. The following outlines the operations required:

1. Load .A with the logical file number to use for the file, .X with $01 (the device

number of the Datassette), and .Y with the secondary address (0=read, l=write

with end-of-file, 2=write with end-of-tape). Call SETLFS ($FFBA).

2. Load .A with the length of the file name (0 if no name), .X with the low byte of

the address where the file name is stored, and .Y with the high byte of the

address where the file name is stored. Call SETNAM ($FFBD).

3. Call OPEN (FFC0).

4. Check for errors by examining the carry bit.

Close

Files can be closed individually with the CLOSE ($FFC3) routine:

1. Load .A with the logical file number of the file to be closed. Call CLOSE

($FFC3).

The Datassette Tape Recorder 369

2. Check for errors by examining the carry bit and status byte.

All the files in use can be closed and the input and output channels reset to their

default devices by calling CLALL ($FFE7).

Print

To send information into a file, it must have been opened with a secondary

address of 1 or 2 for write. The following outlines the operations required:

1. Load .X with the logical file number of the output file. Designate it as the

output channel by calling CHOUT ($FFC9).

2. Check for errors.

3. Send data to the channel with BSOUT ($FFD2).

4. When all data has been sent, returh the input and output channels to default

(keyboard and screen) by callingCLRCH (SFFCC) and close the file. Or, call

CLALL ($FFE7) to close all the files and reset the input and output channels.

Get

To receive information from a file, the file must have been opened with a

secondary address of 0 for read. The following outlines the operations required:

1. Load .X with the logical file number of the input file. Designate it as the input

channel by calling CHKIN ($FFC6).

2. Check for errors.

3. Receive data from the channel with BASIN (SFFCF).

4. When complete, return the input and output channels to default (keyboard and

screen) by calling CLRCH ($FFCC) and close the file. Or call CLALL

($FFE7) to close all files and resest the input and output channels.

Example: This program creates a data file on tape and records what the user types in (until a

carriage return is received).

2000

2002

2004

2006

2009

200B

200D

A9

A2

A0

20

A9

A2

A0

02

01

01

BA

06

00

21

LDA

LDX

LDY

FF JSR

LDA

LDX

LDY

#$02

#$01

#$01

$FFBA

#$06

#$00
#$21

Logical file number to use for Datassette

file.

Device number of Datassette.

Secondary address signifies write

(end-of-file).

SETLFS.

Length of file name.

Low byte of address of file name.

High byte of address of file name.

370 Using Peripheral Devices

200F

2012

2015

2017

2019

201C

201E

2021

2023

2026

2027

202A

202B

202D

202F

2032

2034

2037

2039

20

20

B0

A9

20

A2

20

B0

20

48

20

68

C9

D0

20

A9

20

B0

00

BD

C0

69

0D

D2

02

C9

5D

CF

D2

0D

F4

CC

02

C3

47

FF

FF

FF

FF

FF

FF

FF

FF

JSR

JSR

BCS

LDA

JSR

LDX

JSR

BCS

JSR

PHA

JSR

PLA

CMP

BNE

JSR

LDA

JSR

BCS

BRK

$FFBD

$FFC0

$2080

#$0D

$FFD2

#$02

$FFC9

$2080

$FFCF

$FFD2

#$0D

$2023

$FFCC

#$02

$FFC3

$2080

SETNAM.

OPEN.

If error, go to error message routine.

Carriage return character.

Send to screen.

Logical file number of data file.

Set to output channel.

If error, go to error message routine.

Get a character from keyboard.

Save on stack.

Send to Datassette.

Retrieve character.

Compare to carriage return.

If not, go on.

Reset I/O channels.

Logical file number of data file.

CLOSE.

If error, go to error message routine.

Stop processing.

This routine sends the message ERROR to the screen:

2080 SO E7 FF JSR IFFE7

S083 A2 05 LDX #$05

2085 BD F8 20 LDA $20F8,X

2088 20 D2 FF JSR $FFD2

208B CA DEX

208C 10 F7 BPL $2085

208E 00 BRK

Close all the files and reset I/O

channels.

Length of message.

Get a character of message.

Send to the screen.

Decrement the pointer.

If not done, go on.

Stop processing.

These data are needed:

>20F8 52 4F 52 52 45 OD 00 00 : [R0RRE...1
>2100 44 41 54 46 49 40 00 00 :|DATFIL..[

Example: This program reads the data file created by the previous example, and sends the

contents to the screen.

. 2000 A9

. 2002 A2

. 2004 A0

. 2006 20

. 2009 A9

. 200B A2

. 200D A0

. 200F 20

. 2012 20

02 LDA #$02

01 LDX #$01

00 LDY #$00

BA FF JSR $FFBA

06 LDA #$06

00 LDX #$00

21 LDY #$21

BD FF JSR $FFBD

C0 FF JSR $FFC0

Logical file number for data file.

Device number of Datassette.

Secondary address signifies read.

SETLFS.

Length of file name.

Low byte of address of file name.

High byte of address of file name.

SETNAM.

OPEN.

The Printer 371

2015

2017

2019

201C

201E

2021

2023

2026

2029

202C

202E

2030

2032

2035

2037

203A

203C

B0

A9

20

A2

20

B0

20

20

20

F0

C9

D0

20

A9

20

B0

00

69

0D

D2

02

C6

5D

CF

D2

B7

F5

40

4E

CC

02

C3

44

FF

FF

FF

FF

FF

FF

FF

BCS

LDA

JSR

LDX

JSR

BCS

JSR

JSR

JSR

BEQ

CMP

BNE

JSR

LDA

JSR

BCS

BRK

$2080

#$0D

$FFD2

#$02

$FFC6

$2080

$FFCF

$FFD2

$FFB7

$2023

#$40

$2080

$FFOC

#$02

$FFC3

$2080

If error, go to error message routine.

Carriage return character.

Send to screen.

Logical file number of file.

Set to input channel.

If error, go to error message routine.

Get a character from the file.

Send to the screen.

Kheck the status byte.

If zero, continue.

Conpare to end-of-file.

If not, go to error message routine.

Reset I/O channels.

Logical file number of file.

CLOSE.

If error, go to error message routine.

Stop processing.

This routine sends the message ERROR to the screen:

2080 20 E7 FF JSR $FFE7

2083 A2 05 LDX #$05

2085 BD F8 20 LDA $20F8,X

2088 20 D2 FF JSR $FFD2

208B CA DEX

208C 10 F7 BPL $2085

208E 00 BRK

These data are needed:

Close all the files and reset I/O

channels.

Length of message.

Get a character of message.

Send to the screen.

Decrement the pointer.

If not done, go on.

Stop processing.

>20F8 52 4F 52 52 45 OD 00 00

>2100 44 41 54 46 49 4C 00 00

The Printer

Numerous printers are available for use with the Plus/4. Commodore manufac

tures a number of them, but other vendors' printers can also be used. All of

Commodore's printers are intelligent and are connected directly to the serial port.

They can be daisy-chained with other serial devices (e.g., a disk drive). Most

other vendors offer an interface cable that connects their printer to the serial port

and emulates a Commodore printer. Commercial software (e.g., word proces

sors) generally assumes that the printer is configured in this way.

Some vendors may interface through an RS232 connection. Programming for

such printers requires using the RS232 port described in another section of this

372 Using Peripheral Devices

chapter. Commercial software may or may not be able to access an RS232

printer. When selecting a printer, make sure that the software you intend to use

will access it properly.

Each type of printer accepts a different set of commands. Some may allow the

printing of graphics characters, upper and lower case, custom designed charac

ters, and so on. It is not possible to completely describe all of the commands

accepted by every type of printer here. Refer to the manual that comes with your

printer for the commands it accepts.

This section describes the method of accessing any printer through the serial

port and, for exemplary purposes, describes the commands accepted by Commo

dore's MPS-801 printer.

Using a Printer with BASIC

The first step in accessing the printer is to issue an OPEN statement:

OPEN filenumber,devloe,seoondary address

Thefilenumber is the logical file number to be associated with the printer. It can

be 0-255, but 128-255 causes a linefeed character to be sent after the carriage

return at the end of a line. The MPS-801 does a carriage return and linefeed upon

receiving a carriage return character or a linefeed character. As a result, a logical

file number from 128 to 255 causes a blank line after each printed line. Other

printers may react differently to the two types of logical file numbers. The device

is the device number; it is generally 4 for a printer. The MPS-801 can be switched

between 4 and 5. The secondary address is interpreted by the printer.

Printers generally accept commands at two levels. The first is within the

secondary address sent to the printer in the open statement. The second is special

nonprinting control characters that the printer interprets. The MPS-801 accepts

only two values for the secondary address:

0 = default setting is upper case/graphics mode.

7 = default setting is upper/lower case mode.

Other printers may accept different secondary addresses with different results.

Once the printer file is open, data may be directed to the printer in two ways.

The first is the CMD command. This is particularly useful in direct mode to get a

printout of the program currently in memory. The CMD command changes the

default output device to the file named:

CMD filenumber

The Printer 373

wherefilenumber is the logical file number to which output should be directed.

Once this command is executed, all output that would normally go to the screen

goes to the named file instead. So, to list a program, type

0PEN4,4:CMD4:LIST

PRINT#4:CL0SE4

The PRINT#4 is needed to restore the default output device to the screen and to

tell the printer to stop listening on the serial bus.

When output to the printer is finished, the file should always be closed using

CLOSE filenumber

wherefilenumber is the logical file number used for the printer. To ensure that the

printer's internal buffer has been emptied, and a stop listening command sent, the

last data byte sent to the printer should be a carriage return. Usually, in a

program, this happens to be the case. When it is not, the CLOSE command

should be preceded by

PRINT*filenumber

The second method of directing data to the printer is with the PRINT#

command. Every character sent to the printer is interpreted as a command or

data. Generally, CHR$ codes of 32 through 127, and 160 through 255 are

printable characters whereas other values may be control characters. The inter

pretation of CHR$ codes depends on the particular printer; check your manual.

For the MPS-801, the following control codes are available:

8 = enter dot mode

10 = linefeed (and carriage return)

13 = carriage return (and linefeed)

14 = enter double width character mode

15 = enter standard width character mode

16 = set the print head position

17 = switch to upper/ lower case

18 = turn on reverse field

26 = repeat dot pattern

27 = specify dot address for print head

374 Using Peripheral Devices

34 = toggle quote mode

145 = switch to upper case/graphics

146 = turn off reverse field

The MPS-801 is always operating in standard width character mode, double

width character mode, or dot mode, the default is standard width character

mode. In double width character mode, data bytes sent to the printer are inter

preted as characters to be printed at twice their normal width. In dot mode, data

bytes are interpreted as vertical dot patterns to be printed one column at a time.

These modes are switched with the CHR$ codes 8, 14, and 15. Each remains in

effect until another mode switch character is received (even after the file is closed

and program ends) or the printer is turned off.

The CharacterModes In both standard and double width character mode, two

character sets are available. These are upper case/ graphics and upper/ lower case.

Choose which of these sets will be the default set by choosing a secondary address

of 0 (or omitting the secondary address) or 7 when opening the printer file.

Regardless of which choice is made, the CHR$ codes 17 (cursor down) and 145

(cursor up) can be used to switch between the sets on a given line. When a carriage

return is received, the character set is reset to the default (as chosen with the

secondary address).

In addition, the reversed image of each character is available. The CHR$ codes

18 (reverse on) and 146 (reverse off) can be used to switch between reversed and

normal characters on a given line. When a carriage return is received, reverse is

automatically turned off.

In either character mode, the spacing between lines is greater than the height of

a character (to enhance readability). This results in six lines per inch.

The print head can be positioned to any character position required by using

the CHR$(16) command. The two characters following the CHR$(16) are inter

preted as CHR$ codes for two-decimal digits specifying the desired character

position of the print head. For example,

PRINT#4,CHR$(16)//10THIS IS A TEST."

prints the sentence starting in position 10 (counting from 0). This position is the

same whether in standard or double width mode.

Quote mode for the printer is similar to quote mode for the screen. That is,

after an odd number of CHR$(34) codes on a given line, control codes are printed

as reversed characters rather than interpreted as commands until another

CHR$(34) or a carriage return is received.

The Printer 37S

Dot Mode When the printer is placed in dot mode with CHR$(8), the data

characters it receives are interpreted as dot patterns. Each column of seven dots is

addressed individually. The low bit is the top dot in the column, and bit 6 is the

bottom bit in the column. When the bit is a 1, the dot is inked, and when the bit is a

0, the dot is left blank. The high bit of a data byte must always be set to 1. The

printer uses this bit to determine that it has received a data byte rather than a

control byte while in dot mode.

In dot mode, the spacing between lines is exactly the height of a column. This

results in nine lines per inch.

The print head can be positioned to any column position required by using the

CHR$(27) and CHR$(16) commands. First the CHR$(27) is sent to indicate a

positioning based on dot columns (rather than character positions). Then the

CHR$(16) is sent to indicate that the head is to be positioned. The first character

following the CHR$(16) is interpreted as the high bit of a 9-bit column position.

The next character is interpreted as the low byte of the column position. For

example,

PRINT#4,CHR$(8)CHR$(27)CHR$(16)CHR$(1)CHR$(4)CHR$(255)

prints a vertical bar (specified by CHR$(255)) in column 260 (counting from 0).

In dot mode, it is possible to repeat a given column of dots a number of times.

This is done using the CHR$(26) command. The byte following this command is

interpreted as the number of repetitions of the column, and the next byte as the

data to repeat. For example,

PRIM-T#4,CHR$(8)CHR$(S55)CHR$(26)CHR$(10)CHR$(193)

CHR$(255)

prints a rectangle consisting of a vertical bar (CHR$(255)), followed by 10 copies

of a column with dots at the top and bottom, and finished with another vertical

bar.

Example: This example program is meant to be run from a computer attached to an

MPS-801 printer set to device number 4. It prints out the lyrics of the Star

Spangled Banner, with little (custom-made) flags beside them. Inside the quota

tion marks, type everything in upper case while holding down the SHIFT key and

everything in lower case without using SHIFT.

10 0PEN4,4,7

20 PRI1TT#4,CHR$(14)//Tlie Star Spangled Banner"

30 F0RI=1TO11:READA:A$=A$+CHR$(A):NEXT

40 FORI=1TO8:READL$(I):3STEXT

50 PRINT#4,CHR$(8)

376 Using Peripheral Devices

60 FORI=1T08:P=I*10

70 PRINT#4,CHR$(S7)CHR|;(16)CHR$(0)CHR$(P)A$CHR$(15)// "

L$(I)CHR$(8)

80 PRIISrT#4,CHR$(27)CHR$(16)CHR$(0)CHR$(P)GHR$(S55)

90 NEXT

100 CL0SE4

110 DATA255,213,S18,S13,218,S13,S13,213,213,213,213

120 DATA"01i! say can you see by the dawn's early light/'

130 DATA"What so proudlywehailedat the twilight's last gleaming!''

140 DATA"Whose broad stripes and bright stars thro' the perilous

fight,"

150 DATA"o'er the ramparts we watched were so gallantly

streaming;"

160 DATA"And the rockets' red glare, the bombs bursting in air,"

170 TDATA"Gave proofthro' the night that our flag was still there."

180 DATA"0h! say does that star spangled banner yet wave"

190 DATA"0'er the land of the free, and the home of the brave."

Line-by-Line Explanation

10 Open a file to the printer with upper/lower case as default.

20 Put the printer into double width character mode, and print out the

title.

30 Read the data for the flag symbol and store in A$.

40 Read the data for the lyrics and store in L$.

50 Put the printer into dot mode.

60 I counts the lines. P is the position to start this line. Since I goes

from 1 to 8, P will go from 10 to 80, so the high bit of the position is

always 0.

70 Position the print head in column P, print out a flag, put the printer

into standard width character mode, print a line of lyrics, and put

the printer back into dot mode.

80 Position the print head in column P again, and print the flag pole.

90 Go on to the next line.

100 Close the printer file.

110 Data for flag symbol.

120-190 Data for lyrics.

The Printer 377

Using a Printer from Machine Language

All of the printer commands and the functions they perform in BASIC are the

same for machine language. Again, the manual relating to the specific printer in

use should be referred to for the interpretation of secondary addresses and

control codes. The function of the BASIC commands described previously to

open and send data to printer files can be accomplished in machine code by using

the appropriate operating system subroutines.

In general terms, you can choose one oftwo levels of communication when you

use the printer. The higher level allows the maintenance of multiple open files

similar to using OPEN commands in BASIC. At the lower level, it is possible to

send data to the printer directly through the serial bus subroutines. Both of these

levels are explored and example programs are given in this section. The complete

descriptions of the operating system subroutines used can be found in Chapter 5.

Using the File Structure This section outlines the machine-language equiva

lents for the BASIC statements OPEN, CLOSE, and PRINT#. They can be used

for all the purposes outlined in the preceding BASIC sections. The key subrou

tines are OPEN ($FFC0), CLOSE ($FFC3), CHOUT ($FFC9), CLRCH

($FFCC), and BSOUT ($FFD2). Any messages printed to the screen during these

operations are controlled by the message flag set with SETMSG ($FF90).

Open

The OPEN subroutine performs the same function for the printer in machine

code as the OPEN command does in BASIC. A secondary address may be sent to

control printer functions. The following outlines the operations required:

1. Load .A with the logical file number to use for the file, .X with the device

number of the printer, and .Y with the secondary address. Call SETLFS

(SFFBA).

2. Load .A with $00 (the length of the file name). Call SETNAM ($FFBD).

3. Call OPEN ($FFC0).

4. Check for errors by examining the carry bit and status byte.

Close

Files can be closed individually by using the CLOSE ($FFC3) routine:

1. Load .A with the logical file number of the file to be closed. Call CLOSE

($FFC3).

Example:

378 Using Peripheral Devices

2. Check for errors by examining the carry bit and status byte.

All the files in use can be closed and the input and output channels reset to their

default devices by calling CLALL ($FFE7).

Print

The following outlines the operations required to send a byte (data or control) to

an open printer file:

1. Load .X with the logical file number of the printer file. Designate it as the

output channel by calling CHOUT ($FFC9).

2. Check for errors.

3. Send data to the channel with BSOUT ($FFD2).

4. When all data has been sent, return the input and output channels to default

(keyboard and screen) by calling CLRCH ($FFCC) and close the file. Or call

CLALL ($FFE7) to close all the files and reset the input and output channels.

This program opens a printer file and sends whatever the user types in on the

keyboard to it, until a carriage return is received. It uses device number 4 and a

secondary address of 7 (which means upper/lower case on the MPS-801). If these

are not appropriate, change them.

2000

2002

2004

2006

2009

200B

200E

2011

2013

2015

2018

201A

201D

201F

2022

2025

2027

2029

202C

202E

2031

2033

2036

2038

A9

A2

A0

20

A9

20

20

B0

A9

20

A2

20

B0

20

20

C9

D0

20

A9

20

B0

20

D0

00

02

04

07

BA

00

BD

C0

6D

0D

D2

02

C9

61

CF

D2

0D

F6

CC

02

C3

4D

B7

48

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

LDA

LDX

LDY

JSR

LDA

JSR

JSR

BCS

LDA

JSR

LDX

JSR

BCS

JSR

JSR

CMP

BNE

JSR

LDA

JSR

BCS

JSR

BNE

BRK

#$02

#$04

#$07

$FFBA

#$00

$FFBD

$FFC0

$2080

#$0D

$FFD2

#$02

$FFC9

$2080

$FFCF

$FFD2

#$0D

$201F

$FFOC

#$02

$FFC3

$2080

$FFB7

$2080

Logical file number of printer file.
Device number of printer.

Secondary address to send.

SETLFS.

No filename.

SETNAM.

OPEN.

If error, go to error message routine.

Carriage return character.

Send to screen.

Logical file number of printer file.

Set to output device.

If error, go to error message routine.

Get keypress from keyboard.

Send to printer.

Compare to a carriage return character

If not, continue.

Reset I/O channels.

Logical file number of printer file.

CLOSE.

If error, go to error message routine.

Check status byte.

If not zero, then error.

Stop processing.

The Printer 379

This is a routine to close all the files and print ERROR on the screen:

. 2080 20 E7 FP JSR FF7 Close all the files and reset I/O

channels.

. 2083 A2 05 LDX #$05 Counter for message.

. 2085 BD F8 20 LDA $20F8,X Get a byte of message.

. 2088 20 D2 FF JSR $FFD2 Send to the screen.

. 208B CA DEX Decrement the counter.

. 208C 10 F7 BPL $2085 If not done, go on.

. 208E 00 BRK Stop processing.

These are the data for the error message:

>20F8 52 4F 52 52 45 OD 00 00 -1R0RRE...1

Programming the SerialBus Occasionally it is desirable to program directly to

the serial bus. The family of operating subroutines used for this purpose consists

of LISTN (SFFB1), SECND ($FF93)5 CIOUT($FFA8), and UNLSN ($FFAE).

Programming at this level eliminates the file structure used with OPEN and

CLOSE. Error checking must be done using the status variable for device not

present, and such. When this is done depends to a large extent on what assump

tions the particular application allows. When in doubt, check for an error.

To Send Data to a Printer File

Here is an outline of a procedure:

1. Set the status variable ($90) to zero.

2. Load .A with the device number of the printer (and store in the current device

number at $AE if this has not been done previously). Call LISTN ($FFB1).

Check for a device not present error in the status variable.

3. Load .A with the secondary address you want to send ORed with $60 Call
SECND ($FF93).

4. Send the data through .A to the printer using CIOUT ($FFA8).

5. Call UNLSN ($FFAE).

Example: This program commands the printer to listen and sends to it whatever the user
types on the keyboard until a carriage return is received. It uses device number 4

and a secondary address of 7 (which means upper/lower case on the MPS-801). If
these are not appropriate, change them.

380 Using Peripheral Devices

. sooo

. 2002

. 2005

. 2007

. 2009

. 200B

. 200D

. 2010

. 2013

. 2015

. 2017

. 201A

. 201D

. 2020

. 2022

. 2024

. 2027

. 202A

. 202C

A9

20

A9

85

A9

85

20

20

DO

A9

20

20

20

C9

DO

20

20

DO

00

OD

D2

00

90

04

AE

Bl

B7

6B

67

93

CP

A8

OD

P6

AE

B7

54

FF

FF

FF

FF

FF

FF

FF

FF

This routine sends i

. 2080

. 2083

. 2085

. 2088

. 208B

. 208C

. 208E

20

A2

BD

20

CA

10

00

AE

05

P8

D2

P7

FF

20

FF

LDA

JSR

LDA

STA

LDA

STA

JSR

JSR

BME

LDA

JSR

JSR

JSR

CMP

BNE

JSR

JSR

BNE

BRK

#$0D

IFPD2

#$oo

$90

#$04

$AE

$FFB1

IPPB7

$2080

#$67

$PP93

$FFCF

$FFA8

#$0D

$201A

$FFAE

$PFB7

$2080

Carriage return character.

Send to the screen.

Load .A with zero.

Store in the status register.

Device number of printer.

Store in the current device number.

LISTN.

Read the status register.

If not zero, error.

Secondary address (7 ORed with $60)

SECND.

Read a keypress from the keyboard.

Send to the serial bus.

Compare with a carriage return.

If not equal, continue.

UNLSN.

Read the status register.

If not zero, error.

Stop processing.

in unlisten and prints out the error message:

JSR

LDX

LDA

JSR

DEX

BPL

BRK

IFFAE

#$05

$20F8,X

$FFD2

$2085

UNLSN.

Length of message.

Get a character of message.

Send to the screen.

Decrement the pointer.

If not done, continue.

Stop processing.

These data are the error message:

>20F8 52 4P 52 52 45 *0D 00 00 :|R0RKE...

The Modem and Other RS232 Devices

The RS232 port on the Plus/4 is not identical with that of the Commodore 64 and

VIC-20. As a result, RS232 interfaces that work with those computers may or

may not work with the Plus/4. In particular, the VIC modem and automodems

sold for use with the VIC and 64 do not work with the Plus/ 4. Commodore's new

1660 MODEM/300 is compatible with the Plus/4 as well as the Commodore 64

and VIC-20.

The commands described in this section have been verified with a 1660. The use

of other RS232 devices should be similar. Please refer to the documentation

The Modem and Other RS232 Devices 381

packaged with the device or interface for differences. The use ofthe RS232 port in

machine language is virtually identical to its use in BASIC. Machine-language

programmers will find both the BASIC and machine-language descriptions

helpful.

Using an RS232 Device with BASIC

The RS232 port is opened as an input/output file. When it is opened, the

communications protocol to be used is established through the control and

command registers. The values of these registers are passed to the RS232 port

through the file name parameter of the OPEN command. That is, the first two

characters of the parameter are interpreted as the CHR$ codes for the control and

command register values. Any subsequent characters are ignored. The secondary

address parameter of the OPEN command is ignored. The OPEN command

syntax is

OPEN fUenumber,&,0,ClIR$(control register)CHR$(Gonunand

register^)

wherefilenumber is the logical file number to associate with the RS232 port. The

logical file number can be 1-255 (128-255 causes a linefeed to follow each

carriage return). The control and command register values are passed as a

two-character string.

The control register values are as follows:

Bit(s)

0-3

Meaning

baud rate generator

0000 =

0001 =

0010 =

0011 =

0100 =

0101 =

0110 =

0111 =

1000 =

1001 =

1010 =

1011 =

1100 =

1101 =

1110 =

mi =

16 times external clock

50 baud

75

109.92

134.58

150

300

600*

1200*

1800*

2400*

3600*

4800 *

7200*

9600 *

19200 *

383 Using Peripheral Devices

4 receiver clock source

0 = external receiver clock

1 = baud rate generator

5-6 word length

00 = 8 bits

01 = 7 bits

10 = 6 bits

11 = 5 bits

7 stop bits

0 = 1 stop bit

1 = 2 stop bits

♦The 1660 cannot operate above 300 baud.

The command register values are as follows:

Bit(s) Meaning

0 data terminal ready

0 = disable receiver and all interrupts (DTR high)

1 = enable receiver and all interrupts (DTR low)

1 receiver interrupt enable

0 = IRQ interrupt enabled from bit 3 of status register

1 = IRQ interrupt disabled

2-3 transmitter controls:

00

oi-

io

11

Interrupt

= disabled

= enabled

= disabled

= disabled

mode for receiver

0 =

1 =

normal

echo (bits 2 and

RTS

Level

high

low

low

low

3 must be

Transmitter

Status

off

on

on

transmit BRK

00)

5-7 parity

—0 = disabled

001 = odd parity receive and transmit

The Modem and Other RS232 Devices 383

011= even parity receive and transmit

101 = mark parity bit transmit/no parity check

111= space parity bit transmit/no parity check

Errors associated with the RS232 port can be read from the status variable

(ST). The meanings of its bits are as follows:

Bit Meaning

0

1

2

3

4

5

6

7

parity error

framing error

receiver buffer overrun

receiver buffer empty

clear to send missing*

—

data set ready missing

(data set refers to the modem)

break detected*

♦From disassembling the operating system, it appears

that these bits will never be set.

Bits 2 and 3 reflect the status of the RS232 buffer. When bit 3 is set, no

character was received. When bit 2 is set, the buffer is full. Bit 6 may be set if

communication through the port is begun before it fully initializes.

The RS232 logic has a built-in capability to send and receive x-on (transmitting

on) and x-off (transmitting off) characters. It is enabled by storing the nonzero

x-on character in location 252 ($FC) and the nonzero x-off character in location

253 ($FD). When the RS232 buffer is almost full, the x-off character is sent to the

host computer. When it is almost empty again, the x-on character is sent.

Similarly, when the x-off character is received, the operating system holds off

sending data until an x-on character is received. Check the specifications of the

host computer you are communicating with to determine the proper values for

x-on and x-off.

As with all logical files, the RS232 port should be closed using

CLOSE file number

When the file is closed, the buffer area and its associated registers are cleared. To

check that everything has been received before this is done, you can check the

value found at 2003 (S07D3). This location contains the count for the RS232

buffer.

384 Using Peripheral Devices

Handling the Phone with the 1660 Automodem The 1660 can be used to dial

and answer the phone. Dialing can be done with touch tone frequencies or

standard pulse dialing.

Location 64784 ($FD10) controls the phone. First, make sure the phone is

hung up:

POKE 64784,PEEK(64784) OR 64

Then, wait briefly and pick up the phone with

POKE 64784,PEEK(64784) A1TO 191

Touch tone dialing is done by sending two tones to the phone simultaneously.

Each tone corresponds to a row or column on the touch tone pad.

Column 1: SOUND 1,931,5

2: SOUND 1,940,5

3: SOUND 1,948,5

Row 1: SOUND 2,864,5

2: SOUND 2,879,5

3: SOUND 2,893,5

4: SOUND 2,905,5

Pulse dialing is done by repeatedly picking the phone up and putting it down (as

described above; see the example program).

To answer the phone, first hang it up (as above); then wait for a ring with

linenumber IP PEEK(64784)AKD1S8 THEN linenumber

When the phone is ringing, bit 7 is cleared and the logical statement is false, so the

program continues. Then execute the statement that picks up the phone.

Example: This example uses the touch tone frequencies to dial the phone, and then starts

communicating, until a G Q is typed. For communication with many systems,

the data received and sent has to be translated to and from Commodore CHR$

codes. This program does not perform such a function. Also, it may sometimes be

necessary to check the status variable after a GET# or PRINT#.

10 VOL8

20 PORI=0TO2:READNC(I):NEXT

30 FORI=0TO3:READNR(I):NEXT

The Modem and Other RS232 Devices 38S

40 DATA931,940,948

50 DATA864,879,893,905

60 PRINTMMAKE SURE A-0 SWITCH IS ON 0"

70 INPUT"NUMBER TO DIAL";N$

80 IFLEN(N$)O7THEN70

90 POKE64784,(PEEK(64784)OR64)

100 PORI=1TO500:NEXT

110 POKE64784,(PEEK(64784)AND191)

120 FORI=1TO500:NEXT

130 FORI=lTO7:N=ASC(MID$(N$,I,l))-48

140 IFN<0ORN>9THEN200

150 IFN=0THENN=11

160 R=INT((N-1)/3):C=N-1-R*3

170 SOUNDl,NC(C),5:SOUND2,NR(R),5

180 FORT=1TO50:NEXTT,I

190 PRINT"DIAL COMPLETE":G0TO220

200 PRINT"INVALID NUMBER"

210 VOL0:POKE64784r(PEEK(64784)OR64):END

220 OPEN1,2,0,CHR$(22)+CHR$(5)

230 GET#1,A$:IFA$O""THENPRINTA$;

240 GETA$:IFA$=""THEN230

250 IFA$=CHR$(171)THEN280

260 PRINT#1,A$;

270 GOTO230

280 CLOSE1:GOTO210

Line-by-Line Explanation

10 Turn on volume for tone generation.

20 Read the frequencies for columns.

30 Read the frequencies for rows.

40-50 Data for frequencies.

60 Remind the user he or she is originating the communication.

70 Receive the number to dial.

80 Check for correct length of number.

90 Hang up the phone.

100 Wait.

110 Pick up the phone.

120 Wait.

130 I points to the digits. Get the value of a digit.

140 If not a valid digit, leave.

150 A zero is the eleventh button.

386 Using Peripheral Devices

160 Find the row and column.

170 Sound the appropriate tones.

180 Wait, then go on to next digit.

190 Dialing is completed.

200 Print the error message.

210 Turn off the volume, and hang up the phone.

220 Open the RS232 port.

230 Get a byte from the RS232 buffer; if not a null, print it on the screen.

240 Get a byte from the keyboard; if a null, go back to 230.

250 Check for Q key pressed with Q key to quit.

260 Send the character to RS232.

270 Go back to 230.

280 Close the RS232 port and go to 210.

Example: This example uses pulses to dial the phone and then starts communicating until a

Q Q is typed.

10 PRINT"MAKE SURE A-0 SWITCH IS ON 0"

20 INPUT"NUMBER TO DIAL";N$

30 IFLEN(N$)O7THEN20

40 POKE64784,(PEEK(64784)OR64)

50 FORI=1TO500:NEXT

60 POKE64784,(PEEK(64784)AND191)

70 PORI=1TO500:NEXT

80 FORlKLTO7:N=ASC(MID$(N$,I,l))-48

90 IFN<0ORN>9THEN160

100 IFN=0THENN=10

110 PORJ=1TON

120 POKE64784, (PEEK(64784)OR64) :FORT=1TO40:NEXT

130 POKE64784,(PEEK(64784)AND191):FORT=1TO25:NEXTT,J

140 FORT=1TO350:NEXTT,I

150 PRINT"DIAL COMPLETE":GOTO180

160 PRINT"INVALID-NUMBER"

170 POKE64784,(PEEK(64784)OR64):END

180 OPEN1,2,0,CHR$(22)+CHR$(5)

190 GET#1,A$:IFA$O""THENPRINTA$;

200 GETA$:IFA$=""THEN190

210 IFA$=CHR$(171)THEN240

220 PRINT#1,A$;

230 GOTO190

240 CLOSE1:GOTO170

The Modem and Other RS232 Devices 387

Line-by-Line Explanation

10 Remind the user he or she is originating the communication.

20 Receive the number to dial.

30 Check for the correct length of the number.

40 Hang up the phone.

50 Wait.

60 Pick up the phone.

70 Wait.

80 I points to the digits. Get the value of a digit.

90 If not a valid digit, leave.

100 A zero is really 10 pulses.

110 J counts the pulses.

120 Hang up and wait.

130 Pick up and wait. Go on to the next pulse.

140 Wait, then go on to the next digit.

150 Dialing is completed.

160 Print error message.

170 Hang up the phone.

180 Open the RS232 port.

190 Get a byte from the RS232 buffer; if not a null, print it on the screen.

200 Get a byte from the keyboard; if a null, go back to 190.

210 Check for Q key pressed with Q key to quit.

220 Send the character to RS232.

230 Go back to 190.

240 Close the RS232 port and go to 170.

Example: This example waits to answer the phone, and then starts communicating until a

88 Q is typed.

10 PRINTCHR$(147)//MAKE SURE A-0 SWITCH IS ON A":PRINT:

PRINT

388 Using Peripheral Devices

20 P0KE64784,(PEEK(64784)0R64)

30 FORI=1TO5OO:1TEXT

40 PRIITTCHR$(145)//WAITINGP0RCALL//

50 IPPEEK(64784)A]SrD128THEMr50

60 PRI1TT"CALL RECEIVED77

70 P0KE64784,(PEEK(64784)AUD191)

80 PRINT''CALL ANSWERED"

90 OPEN1,2,O,CHR$(22)+CHR$(5)

100 GET#lrAt:IPA$O////THEITPRimiA$;

110 GETA$:IFA$=""THElT100

120 IPA$=CHR$(171)THEW150

130 PRINT#l,A$;:PRim'A$;

140 GOTO100

150 CL0SE1

160 P0KE64784,(PEEK(64784)0R64)

Line-by-Line Explanation

10 Remind the user he or she is answering.

20 Hang up the phone.

30 Wait.

40 Print the wait message.

50 Wait for a ring.

60 Print the received message.

70 Pick up the phone.

80 Print the answered message.

90 Open the RS232 port.

100 Get a byte from the RS232 buffer; if not a null, print it on the screen.

110 Get a byte from the keyboard; if a null, go back to 100.

120 Check for Q key pressed with Q key to quit.

130 Send the character to RS232.

140 Go back to 100.

150 Close the RS232 port.

160 Hang up the phone.

The Modem and Other RS232 Devices 389

Using an RS232 Device from Machine Language

The RS232 port is handled the same way in machine language as in BASIC. The

status variable is read with READSS.

Open

When the file is to be opened, the control and command registers (two characters)

must be stored in ascending order somewhere in memory. The following outlines

the operations required:

1. Load .A with the logical file number to use for the file, .X with $02 (the device

number of the RS232 port), and .Y with $FF (to signify no secondary address).

Call SETLFS ($FFBA).

2. Load .A with the length ofthe register information (usually 2), .X with the low

byte of the address where the registers are stored, and .Y with the high byte of

the address where the registers are stored. Call SETNAM ($FFBD).

3. Call OPEN ($FFC0).

4. Check for errors by examining the carry bit.

Close

Files can be closed individually with the CLOSE ($FFC3) routine:

1. Load .A with the logical file number of the file to be closed. Call CLOSE

($FFC3).

2. Check for errors by examining the carry bit.

All the files in use can be closed and the input and output channels reset to their

default devices by calling CLALL ($FFE7).

Print

To send information to the RS232 port, the port must have been opened. The

following outlines the operations required:

1. Load .X with the logical file number of the output file. Designate it as the

output channel by calling CHOUT ($FFC9).

2. Check the status byte for errors.

390 Using Peripheral Devices

3. Send data to the channel with BSOUT ($FFD2).

4. Check the status byte for errors.

5. When all data has been sent, return the input and output channels to default

(keyboard and screen) by calling CLRCH ($FFCC) and close the file, or call

CLALL ($FFE7) to close all the files and reset the input and output channels.

Get

To receive information from the RS232 port, the port must have been opened.

The following outlines the operations required:

1. Load .X with the logical file number of the input file. Designate it as the input

channel by calling CHKIN ($FFC6).

2. Check the status byte for errors.

3. Receive data from the channel with BASIN ($FFCF).

4. Check the status byte for errors.

5. When all data received, return the input and output channels to default

(keyboard and screen) by calling CLRCH ($FFCC) and close the file, or call

CLALL ($FFE7) to close all the files and reset the input and output channels.

The Joystick Ports

The Commodore Plus/4 is equipped with two joystick ports located on the rear of

the computer. The Commodore T-1341 joystick is compatible with the Plus/4.

Older Commodorejoysticks are not compatible. The ports are numbered 1 and 2.

Fundamentally, a Commodorejoystick consists offive switches, each of which

is assigned to one of the following: up, down, right, left, and fire. In machine

language, the programmer must examine a bit reflecting the status of each switch

to read joystick input. In BASIC, however, the JOY function can be used to

determine the joystick status.

Using Joysticks with BASIC

The JOY function has the following syntax:

JOY (port)

where port is the joystick port to use (either 1 or 2). The function returns a

The Joystick Ports 391

numeric value depending on the state of thejoystick. The following table lists the

possible values returned:

Value

0

1

2

3

4

5

6

7

8

Joystick State

neutral

up

up and right

right

down and right

down

down and left

left

up and left

In addition, when the fire button is pressed, 128 is added to the values listed in the

table.

Example: This program plots and unplots a circle on the high-resolution graphic screen.

Whenever the joystick in port 1 is pushed away from neutral, the circle is moved

in a corresponding direction. Whenever the fire button of thejoystick in port 1 is

pressed, a circle is plotted and remains in place. To exit, press the space bar.

10 P0RI=lT08:READDX(I),DY(I):NEXT

20 GRAPHIC1,1

30 CIRCLE1,160,100,10,10

40 SSHAPEC$,150,90,170,110

50 GSHAPEC$,150,90,4

60 X=150:Y=90

70 GSHAPBC$,X,Y,4

80 GSHAPEC$,X,Y,4

90 GETA$:IFA$=" "THEN150

100 J=JOY(1):IFJ=0THEN70

110 IF(JAND128)=0THEN130

120 GSHAPEC$,X,Y,4

130 J=JAND15:X=X+DX(J):Y=Y+DY(J)

140 GOTO70

150 CHAR1,1,23,"HIT KEY"

160 GETKEYA$:GRAPHIC0:END

170 DATA0,-1,1,-1,1,0

180 DATA1,1,0,1,-1,1,-1,0

190 DATA-1,-1

Line-by-Line Explanation

10 Read in the amount to change x- and ^-coordinates based on JOY

value.

392 Using Peripheral Devices

20 Enter high-resolution graphic mode.

30 Draw a circle.

40 Save the circle in C$.

50 Erase the circle.

60 Set the initial coordinate values.

70 Draw the circle.

80 Erase the circle.

90 Look for the space bar.

100 Get the current value of JOY. If neutral, go back to line 70.

110 Check for fire button. If not, go on to line 130.

120 Draw the circle.

130 Use the value of JOY (fire button status removed) to change the

coordinates.

140 Go back to line 70.

150 Write HIT KEY on the screen.

160 Wait for a key, then return to the text mode and stop.

170-190 Data for change in x- and ^-coordinates based on JOY value.

Using Joysticks from Machine Language

In machine language, the joysticks must be read through the keyboard latch at

$FF08 on the graphics chip. Since the normal system interrupt service routine

uses this register for keyboard scanning, interrupts would normally be turned off

during this process. Forjoystick port 1, store $FA to $FF08 and then read $FF08.

For joystick port 2, use $FD. Usually, this should be done at least twice and the

results compared to avoid spurious readings. Additional debouncing, such as

reading the ports somewhat infrequently, may be required to provide smooth

joystick action.

The results of reading the keyboard latch are slightly different for the two

ports. In particular, port 1 uses bit 6 for the fire button switch, whereas port 2 uses

bit 7. The relationships between bit and switch are as follows:

Bit Switch

0 Up

1 Down

The Joystick Ports 393

2

3

4

5

6

7

Left

Right

Unused

Unused

Fire for

Fire for

port

port

1

2

(unused

(unused

for

for

2)

1)

When a switch is engaged, the bit is cleared to 0; otherwise it is set to 1. All of the

unused bits are always set to 1. As a result, an $FF indicates a neutral position for

the joystick.

Example: This is a subroutine for reading joystick port 1. On return, carry clear means

FIRE; carry set is no FIRE. The X register is set to -1 ($FF), 0, or 1 to indicate

left, middle, and right positions, respectively, in the horizontal direction. The Y

register is set to -1 ($FF), 0, or 1 to indicate down, middle, and up positions,

respectively, in the vertical direction.

2000 A2 FA LDX #$FA

2002 78 SEI

2003 8E 08 FF STX $FF08

2006 AD 08 FF LDA $FF08

2009 8E 08 FF STX $FF08

200C

200F

2011

2012

2014

2016

2017

2019

201A

201B

201D

201E

201F

2021

2022

2023

2025

2026

2027

2028

2029

CD

D0

58

A2

A0

4A

B0

C8

4A

B0

88

4A

B0

CA

4A

B0

E8

4A

4A

4A

60

08

F2

00

00

01

01

01

01

FF CMP

BNE

CLI

LDX

LDY

LSR

BCS

INY

LSR

BCS

DEY

LSR

BCS

DEX

LSR

BCS

INX

LSR

LSR

LSR

RTS

$FF08

$2003

#$00

#$00

$201A

$201E

$2022

$2026

Latch value for port 1.

Disable interrupts.

Store latch value in keyboard latch

register.

Read keyboard latch register.

Store latch value in keyboard latch

register.

Compare to previous reading.

If not equal, do it again.

Enable interrupts.

Initially set changes to zero.

Look at bit 0.

If set, switch is off.

Up switch is on, increment y change.

Look at bit 1.

If set, switch is off.

Down switch is on, decrement y change.

Look at bit 2.

If set, switch is off.

Left switch is on, decrement x change.

Look at bit 3.

If set, switch is off.

Right switch is on, increment x change.

Skip bit 4.

Skip bit 5.

Carry reflects status of fire switch.

Return.

For port 2, the $FA in the instruction at $2000 must be changed to $FD and an

additional LSR instruction placed at $2029, with the RTS at $202A.

Appendix A

Error Messages

BASIC 3.5 Error Messages

This appendix explains the BASIC 3.5 error messages in numerical order. When

you are using BASIC and get an error, you can display the number of the error by

PRINTing ER. ER is the system reserved, variable that contains the number of

the current error. PRINT ERR$(ER) to display the brief error message for the

current error. The only purpose for the error number is to identify the error with

the ER and ERRS functions, which are especially useful in error-trapping rou

tines. See the TRAP command for additional information.

1 TOO MAMT FILES

BASIC allows only 10 open files at a time. This message appears after you

attempt to OPEN an 1 lth file. To remedy, CLOSE an opened file and then reissue

the OPEN command that was rejected for being the 1 lth file.

2 FILE OPEN

This message actually tells you that you have illegally used a duplicate logical file

number in an OPEN command. BASIC does not permit duplicate logical file

numbers, even if you are opening different types of devices. As long as a file

remains open, you cannot reuse its logical file number in another OPEN

command.

3 FILE HOT OPEN

This message tells you that you have issued a file command without first issuing

an OPEN command. BASIC does not permit commands sent to a file or device

until after that file or device has been accessed by an OPEN command.

398

396 Error Messages

4 FILE NOT FOUNT)

This message is displayed in response to an unsuccessful LOAD or DLOAD

command. If you are searching a tape for a file, this message indicates that an

end-of-tape marker has been read. If you are loading from disk, the message

indicates that the file is not saved on that disk. Issue a DIRECTORY command

to display the disk contents. It is possible that you misspelled the file name when

you issued the DLOAD command.

5 DEVICE NOT PRESENT

This message is displayed in response to a command to a peripheral device when

the computer cannot access that device because it is not turned on or is not

properly connected.

6 NOT INPUT FILE

This message indicates that you have tried to INPUT or GET data from a file you

created as an output-only file.

7 NOT OUTPUT FILE

This message indicates that you have tried to output data to a file you created as

an input-only file.

8 MISSING FILE NAME

This message is displayed when BASIC requires a file name in a LOAD, OPEN,

or SAVE command you have issued to the disk drive.

9 ILLEGAL DEVICE NUMBER

This message indicates that you sent a command to a peripheral that cannot

execute the command. You probably used the wrong device number in the

command (e.g., SAVE "LETTERFILE",4, which tells BASIC to save afile to the

printer).

10 NEXT WITHOUT FOR

BASIC requires a FOR command for every NEXT, but not a NEXT for every

FOR (although no NEXT would mean the FOR loop would execute only once).

This message indicates that you omitted or misplaced the NEXT command. This

is most likely to occur when multiple FOR... NEXT loops are nested incorrectly.

BASIC 3.5 Error Messages 397

11 SYNTAX ERROR

This message indicates that you have not followed the BASIC syntax rules.

Check the command to see if you misspelled a BASIC keyword, typed a non-

BASIC word without enclosing it in quotes or placing it in a REM statement,

added something to a command that is not allowed, omitted something required

in a command, or used an odd number of parentheses.

IS RETURN WITHOUT GOSUB

RETURN commands must always accompany GOSUB commands. This mes

sage indicates that BASIC found a RETURN command when a GOSUB was not

currently executing.

13 OUT OP DATA

This message indicates that the current READ command cannot find a DATA

value because no DATA command exists or all the DATA values have been read

previously. Although it is legal to have excess DATA values in a program, all

READ variables must be matched to DATA values. You can use the RESTORE

command to reREAD DATA.

14 ILLEGAL QUANTITY

This message indicates that the current command or function parameter contains

a number that is outside the legal range for the circumstances. For example, the

first parameter in a COLOR command, color source, can be 0-4, so COLOR

6,1,2 results in an ILLEGAL QUANTITY error.

15 OVERFLOW

This message indicates that the result of the current calculation is a number with

absolute value greater than 1.701411833E+38, which is the largest legal number in

BASIC 3.5.

16 OUT OP MEMORY

This message indicates that the current program is too large for the available

RAM, or that the program contains too many DO, FOR, or GOSUB commands,

or that the program contains DO commands with no LOOP or EXIT command,

or GOSUB commands with no RETURN command. This error can also be

caused by repeated assignments to the same string variable; a call to the FRE

function may correct this problem.

398 Error Messages

17 UNDEFD STATEMENT

This message indicates that the current command refers to a line number that

does not exist in the program. For example, a GOTO or THEN command that

sends the program to a line that does not exist in the program results in an

UNDEF'D STATEMENT error.

18 BAD SUBSCRIPT

This message indicates that the current command refers to an array subscript that

is outside the array dimensions established in the array's DIM command or the

default array dimensions.

19 REDIM'D ARRAY

This message indicates that you have tried to reDIM an array that was previously

DIMed, that you have inadvertently reused an array variable name in another

DIM command, or that you have tried to DIM an array after you used the array

in the program. Arrays can be DIMensioned only once, and you cannot dimen

sion an array after you use it in the program even if you have not previously

DIMed the array. If you access an array before you DIM it, BASIC automatically

DIMs the array with a default dimension of 10. You cannot DIM an array after it

has been DIMed by default.

20 DIVISION BY ZERO

This message indicates that the current command tried to perform a division with

a divisor of zero, which is illegal. This usually happens when you are dividing with

variables and the divisor variable is assigned a value of zero. Use a TRAP routine

to check for this error to avoid aborting the program.

21 ILLEGAL DIRECT

This message indicates that you issued a command in immediate mode (also

called direct mode) that can be issued only in program mode.

22 TYPE MISMATCH

This message indicates that the current command assigns a value to the wrong

type of variable. For example, assigning a text string value to an integer variable

results in a TYPE MISMATCH error.

BASIC 3.5 Error Messages 399

23 STRING TOO LONG

This message indicates that a text string is longer than 255 characters, which is the

maximum size accepted by BASIC 3.5.

24 FILE DATA

This message indicates that BASIC has read bad data from a tape file.

25 FORMULA TOO COMPLEX

This message indicates that the current calculation is too long or contains too

many expressions in parentheses.

26 CAN'T CONTINUE

This message indicates that the CONT command you just executed cannot

resume program execution. You may have changed the program after you

stopped it. See CONT.

27 UNDEF'D FUNCTION

This message indicates that the current command refers to a user-defined func

tion that has not been defined in the program. User-defined functions must be

defined in the program before they can be executed.

28 VERIFY

This message appears after you execute a VERIFY command to compare the

current program with one on tape or disk, or when you use VERIFY to search a

tape. The VERIFY message indicates that the program currently in memory is

being compared with the program on tape or disk. If it is followed by the word

ERROR, the program in memory does not match the program on tape or disk.

29 LOAD

This message indicates that the LOAD command just issued was not successful.

Repeat the load.

30 BREAK

When you interrupt a program execution by pressing the STOP key or including

a STOP command, the BREAK message is displayed. BREAK indicates the line

number at which the program was stopped.

400 Error Messages

31 CAN'T RESUME

This message indicates that the program found a RESUME command when a

TRAP command was not currently executing. RESUME works only with the

TRAP command.

32 LOOP NOT FOUND

This message indicates that BASIC cannot locate a LOOP command, which must

accompany a DO command. Either you left out the LOOP command or

improper nesting of multiple loops isolated the DO and LOOP commands.

33 LOOP WITHOUT DO

This message indicates that BASIC cannot locate a DO command, which must

accompany a LOOP command. Either you left out the DO command or

improper nesting of multiple loops isolated the DO and LOOP commands.

34 DIRECT MODE ONLY

This message indicates that you issued a command in a program that can be

issued only in immediate mode (also called direct mode).

35 NO GRAPHICS AREA

This message indicates that BASIC has found a drawing command, such as BOX,

when none of the graphic drawing modes was in effect. A GRAPHIC command

turning on modes 1 through 4 must precede drawing commands.

36 BAD DISK

This message indicates that the disk you are trying to HEADER is defective or

that you attempted to execute a partial header on a disk that has not previously

been fully headered. Repeat the command to be sure.

DOS Error Messages

DOS error messages are returned with an error number, a message, and the track

and sector of the error. Messages returned with error numbers less than 20 can be

ignored. Everything is okay if the error number is 00. And, 01 indicates a

SCRATCHed file report. Some errors in the transmission ofdata from a diskette

DOS Error Messages 401

(23, 24, and 27) can be caused by improper grounding (e.g., you are not using a

three-prong outlet, your outlet is not properly grounded, etc.). Check that your

equipment is grounded properly if these errors occur. In general, if a diskette

causes errors that cannot be explained, you should make copies of all the

information on the diskette. Then, attempt to do a complete HEADER on the

diskette. If it is performed successfully, you can reuse the diskette. Otherwise, toss

it.

20 READ ERROR (header "block not found)

The header of the requested data block could not be located by the DOS.

Either an illegal sector number was specified, or the header block is corrupt.

21 READ ERROR (sync mark not found)

The sync mark of the requested track could not be located by the DOS. This

message can occur because of misalignment of the heads. Misalignment can

be a hardware problem or an improperly inserted diskette. This message can

also occur if no diskette is present or if the diskette is not formatted.

22 READ ERROR (data block not found)

The data read from the requested sector was corrupt. This can indicate an

illegal sector number request, or a corrupt sector.

23 READ ERROR (data "block checksum error)

The checksum read from the requested sector did not match the checksum of

its data. This can indicate a corrupt sector.

24 READ ERROR (data "block decoding error)

At least 1 byte of data read from the requested sector was corrupt. This can

indicate a corrupt sector.

25 WRITE ERROR (verification of data error)

When validated, the data byte just written to the diskette did not match the

data in memory. This can be caused by a physically damaged diskette. An

unclosed file will result. Perform a validate (COLLECT) operation to delete

the unclosed file.

408 Error Messages

26 WRITE PROTECT ON

A write protect tab was detected on a diskette on which a write operation

was attempted. Remove the tab or use another formatted diskette.

27 READ ERROR (header block checksum error)

The checksum from the header block of the requested sector was in error.

This can indicate a corrupt sector.

28 WRITE ERROR (data block too long)

The sync mark of the next header block could not be located. This message

can occur as a result of a hardware problem or an incorrectly formatted

diskette.

29 DISK ID MISMATCH

The ID read from the header block did not match the ID in memory. The ID

of a diskette is permanently recorded in every header block. This error can

result from not initializing the diskette or from a corrupt header block.

30 SYNTAX ERROR (general)

DOS could not understand a command sent to it through the command

channel. This error can be caused by an incorrect number of file names,

incorrect punctuation, or other errors in the DOS command.

31 SYNTAX ERROR (command not valid)

The command sent to the DOS through the command channel was not

recognized by DOS. This can be caused by not starting the command in the

first position of the string sent.

32 SYNTAX ERROR (command too long)

A command longer than 58 characters was sent to DOS through the com

mand channel.

33 SYNTAX ERROR (file name not valid)

A file name sent to DOS was incorrect. This can mean a wildcard was used

illegally.

DOS Error Messages 403

34 SYNTAX ERROR (file name missing)

DOS did not receive a necessary file name. The file name could be present

but not recognizable (e.g., necessary separating punctuation is missing).

39 SYNTAX ERROR (command not valid)

A command sent to the DOS through the command channel was not

recognized by DOS.

50 RECORD NOT PRESENT

This error is the result of attempting to access a record beyond the end of a

relative file. During addition of a new record, this message is expected and

can be ignored. Reposition the pointer before attempting a GET or INPUT.

51 OVERFLOW IN RECORD

The information sent to a relative file record in a PRINT# command

exceeded the record length in the file. The information is truncated. It

should be noted that a carriage return character sent as a record terminator

counts as a byte in the record.

52 FILE TOO LARGE

Creating the record number in the current Position command in a relative

file will cause a disk overflow.

60 WRITE FILE OPEN

Read access was requested for a write file that was not closed.

61 FILE NOT OPEN

An attempt was made to access a file that was never opened.

62 FILE NOT FOUND

A file was requested that does not exist on the diskette.

63 FILE EXISTS

The file name designated for a file being created already appears on the

diskette.

404 Error Messages

64 FILE TYPE MISMATCH

The designated file type of a requested file was not the same as the file's type

on the diskette.

65 WO BLOCK

The block designated in a block allocate (B-A) command was already

allocated. The track and sector returned indicate the next available block

with a higher number. If no block with a higher number is available, zeroes

are returned.

66 ILLEGAL TRACKAND SECTOR

The designated sector does not exist on the diskette. This can be caused by

an attempt to direct access an illegal sector or by a corrupt track/ sector link

to the next block in a file.

67 ILLEGAL SYSTEM T OR S

The DOS attempted to access an illegal sector.

70 NO CHAmSTEL

The designated channel was already in use, or all channels were in use. Five

sequential files, or six direct-access channels can be open at any one time.

71 DIRECTORY ERROR

The BAM in memory is corrupt. Either allocation has been performed

incorrectly or the BAM in memory has been overwritten. The diskette can

be reinitialized to correct this problem, but active files may be affected by

this action.

72 DISK FULL

All of the data blocks, or all of the directory area on the diskette, has been

used.

73 DOS MISMATCH

This message can occur when an attempt to write on a disk formatted by

another version of DOS is made. More often it occurs when the drive is first

turned on; the message can be ignored.

Machine Language Monitor and ROM Subroutine Error Messages 408

74 DRIVE WOT READY

There is no diskette in the designated drive, or the diskette is not properly

inserted.

Machine Language MonitorandROMSubroutine ErrorMessages

0 The routine was terminated by the STOP key.

1 The logical file table is full (too many files are open).

2 The specified logical file is already open.

3 The specified logical file is not open.

4 The specified file name is not found on the specified device.

5 The specified device is not present.

6 The specified device is not an input device.

7 The specified device is not an output device.

8 The file name was missing.

9 The specified device is illegal for this purpose.

Appendix B

BASIC Tokens

In BASIC programs, the keywords (e.g., PRINT, GET, etc.) are not stored as

character strings. Each keyword has a unique "token" assigned to it that is stored

instead of the word itself. BASIC recognizes the tokens because their high bit is

always set. When you enter a BASIC line, BASIC translates the keywords into

tokens for storage. When you LIST a program, BASIC translates the tokens back

into keywords.

Dec Hex Keyword Dec Hex Keyword

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

$80

$81

$82

$83

$84

$85

$86

$87

$88

$89

$8A

$88

$8C

$8D

$8E

$8F

$90

$91

$92

$93

$94

$95

END

FOR

NEXT

DATA

INPUT#

INPUT

DIM

READ

LET

GOTO

RUN

IF

RESTORE

GOSUB

RETURN

REM

STOP

ON

WAIT

LOAD

SAVE

VERIFY

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

$96

$97

$98

$99

$9A

$9B

$9C

$9D

$9E

$9F

$A0

$A1

$A2

$A3

$A4

$A5

$A6

$A7

$A8

$A9

$AA

$AB

DEF

POKE

PRINT#

PRINT

CONT

LIST

CLR

CMD

SYS

OPEN

CLOSE

GET

NEW

TAB(

TO

FN

SPC(

THEN

NOT

STEP

+

—

406

BASIC Tokens 407

Dec Hex Keyword Dec Hex Keyword

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

SAC

SAD

SAE

SAF

SBO

$B1

$B2

$B3

$B4

$B5

$B6

$B7

$B8

$B9

$BA

$BB

SBC

SBD

SBE

$BF

SCO

SCI

$C2

SC3

$C4

$C5

SC6

$C7

$C8

$C9

SCA

SCB

sec

SCD

SCE

SCF

$D0

$D1

SD2

SD3

$D4

SD5

/
t

AND

OR

>

<

SGN

INT

ABS

USR

FRE

POS

SQR

RND

LOG

EXP

COS

SIN

TAN

ATN

PEEK

LEN

STRS

VAL

ASC

CHRS

LEFTS

RIGHTS

MIDS

GO

RGR

RCLR

RLUM

JOY

RDOT

DEC

HEXS

ERRS

INSTR

ELSE

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

$D6

$D7

SD8

SD9

$DA

SDB

SDC

SDD

SDE

SDF

SEO

$E1

$E2

$E3

$E4

$E5

$E6

$E7

$E8

$E9

SEA

SEB

SEC

SED

SEE

SEF

SFO

$F1

$F2

SF3

$F4

$F5

$F6

$F7

SF8

$F9

SFA

SFB

SFC

SFD

SFE

$FF

RESUME

TRAP

TRON

TROFF

SOUND

VOL

AUTO

PUDEF

GRAPHIC

PAINT

CHAR

BOX

CIRCLE

GSHAPE

SSHAPE

DRAW

LOCATE

COLOR

SCNCLR

SCALE

HELP

DO

LOOP

EXIT

DIRECTORY

DSAVE

DLOAD

HEADER

SCRATCH

COLLECT

COPY

RENAME

BACKUP

DELETE

RENUMBER

KEY

MONITOR

USING

UNTIL

WHILE

unknown

IT

Appendix C

CHB4 Codes

CHR$ (character) codes are recognized by BASIC as letters, numbers, other

characters, and commands. The command codes (0-31 and 128-159) tell BASIC

to change its output in some way (e.g., change the color of the characters

PRINTed on the screen, switch to upper/lower case mode, etc.). The remaining

codes represent the characters (letters, numbers, symbols, and graphics) the

Plus/4 recognizes.

CHR$

Dec

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Number

Hex

00

01

02

03

04

05

06

07

08

09

0A

OB

OC

OD

OE

OF

10

11

Display (Quote Mode)

Upper Case/ Upper/lower

Graphic Case Function Keys to Press

White

Disable SHIFT Q

Enable SHIFT Q

RETURN

Turn on Upper/

lower case mode

Cursor down

Control/Wht

Control/H

Control/1

Return

Control N

Cursor down

408

Appendix C 409

CHR$

Dec

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Number

Hex

12

13

14

15

16

17

18

19

1A

IB

1C

ID

IE

IF

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

Display (Quote Mode)

Upper Case) UpperIlower
Graphic Case Function Keys to Press

Reverse on

Home

Delete

Control Rvs On

Clear/ Home

Inst/Del

n
□
□

Escape

Red

Cursor right

Green

Blue

Esc

Control/Red

Cursor right

Control/Grn

Control/Blu

410 Appendix G

CHR$

Dec

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Number

Hex

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

Display (Quote Mode)

Upper Case/ Upper/lower

Graphic Case Function Keys to Press

g

c

H
IS
m
m

Appendix C 411

CHR$

Dec

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

Number

Hex

60

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

80

81

82

83

84

85

86

Display (Quote Mode)

Upper Case/ UpperIlower

Graphic Case Function Keys to Press

e

■ ■

OD
\J\
E
ffl
E

S
12

■ ■

u
h
c

1 ^ F

ffl

C Orange

Flash on

Flash off

Fl*

F3*

SS Orng

Control/Flash On

Control/Flash Off

412 Appendix C

CHR$

Dec

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

Number

Hex

87

88

89

8A

8B

8C

8D

8E

8F

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

A0

Al

A2

A3

A4

A5

A6

A7

A8

A9

AA

AB

AC

Display (Quote Mode)

Upper Casej Upperjlower

Graphic Case Function

F5*

F7*

F2*

F4*

F6*

HELP(F8)*

Disabled RETURN

Switch to Upper case/

Graphic mode

Black

Cursor up

Reverse off

Clear/Home

Insert

Brown

Yellow-Green

Pink

Blue-Green

Light Blue

Dark Blue

Light Green

Purple

Cursor left

Yellow

Cyan

Keys to Press

Shift Return

Control/Blk

Cursor up

Control/ Rvs Off

Shift/Clear/Home

Shift/Inst/Del

E Brn

£8 YlGrn

C8 Pink

88 BIGrn

K8 LBlu

Q DBlu

IS LGrn

Control/Pur

Cursor left

Control/Yel

Control/Cyn

■

D

LI

□

II

D
I

n

□

V.

B
□
IB

Lid

Q

E3

II

□

y
n
□

OB

Appendix C 413

CHR$ Number

Dec

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

Hex

AD

AE

AF

BO

Bl

B2

B3

B4

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

BF

CO

Cl

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC

CD

CE

CF

DO

Dl

D2

D3

Display (Quote Mode)

Upper CaseI UpperIlower

Graphic Case Function Keys to Press

ffl
ffl

ffl
ffl
ffl

□
c
a
n

s

-

E

L.

IZ

ffl
ffl
Q

ffl
e
BD
D
C
a
□

a

H
5
H

414 Appendix C

CHR$ Number

Dec

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

Hex

D4

D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

DF

E0

El

E2

E3

E4

E5

E6

E7

E8

E9

EA

EB

EC

ED

EE

EF

F0

Fl

F2

F3

F4

F5

F6

F7

F8

F9

FA

Display (Quote Mode)

Upper CaseI UpperIlower

Graphic Case Function Keys to Press

ffl

lol

a
m
+

E
DC

a

H

□

B

n
n
Q
LI

E

a

□
h
a
u

m

c
a
□

Appendix C 418

CHR$ Number

Dec Hex

Display (Quote Mode)

Upper Case/ Upper/lower

Graphic Case Function Keys to Press

251

252

253

254

255

FB

FC

FD

FE

FF

E
a

E
E

♦To use CHR$ codes for the function keys, you must first use the KEY command to define a key with the

appropriate CHR$ code number.

Appendix D

ASCII Codes

The American Standard Code for Information Interchange is a frequently used

standard for data communications. This table is presented to allow Plus/4

programmers to translate Commodore character (CHR$) codes to ASCII.

Dec

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Hex

$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

$0A

$0B

$0C

$0D

$0E

$0F

$10

$11

$12

$13

$14

$15

$16

$17

Meaning

NUL — Null

SOH — Start of heading

STX —Start of text

ETX —End of text

EOT — End of transmission

ENQ — Enquiry

ACK — Acknowledge

BEL — Bell

BS — Backspace

HT — Horizontal tab

LF — Line feed

VT — Vertical tab

FF — Form feed

CR — Carriage return

SO — Shift out

SI — Shift in

DLE — Data link escape

DC1 — Device control 1

DC2 — Device control 2

DC3 — Device control 3

DC4 — Device control 4

NAK — Negative acknowledge

SYN — Synchronous idle

ETB — End of transmission block

Dec

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

Hex

$40

$41

$42

$43

$44

$45

$46

$47

$48

$49

$4A

$4B

$4C

$4D

$4E

$4F

$50

$51

$52

$53

$54

$55

$56

$57

Meaning

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q
R

S

T

U

V

w

416

Appendix D 417

Dec Hex Meaning Dec Hex Meaning

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

$18

$19

$1A

$1B

$1C

$1D

$1E

$1F

$20

$21

$22

$23

$24

$25

$26

$27

$28

$29

$2A

$2B

$2C

$2D

$2E

$2F

$30

$31

$32

$33

$34

$35

$36

$37

$38

$39

$3A

$3B

$3C

$3D

$3E

$3F

CAN

EM-

SUB-

ESC-

FS —

GS

RS-

US—

SP —

1

ft

#

$

%

&

(

)
*

+

5

-

%

1
0

1

2

3

4

5

6

7

8

9

;

J

<

>

?

— Cancel

End of medium

— Substitute

- Escape

File separator

Group separator

Record separator

Unit separator

Space

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

$58

$59

$5A

$5B

$5C

$5D

$5E

$5F

$60

$61

$62

$63

$64

$65

$66

$67

$68

$69

$6A

$6B

$6C

$6D

$6E

$6F

$70

$71

$72

$73

$74

$75

$76

$77

$78

$79

$7A

$7B

$7C

$7D

$7E

$7F

X

Y

Z

[
\

]
t

—

blank

a

b

c

d

e

f

g

h

i

j
k

1

m

n

o

P

q

r

s

t

u

v -

w

X

y

z

{

1
}

DEL —

Delete

Appendix E

Screen Display Codes

The current contents of the screen display are stored in an area of RAM called

screen memory. The values stored in screen memory to represent characters are

different from the CHR$ codes.

Upper Case/

Number Graphic Upper/lower

Dec Hex Mode Case Mode

Upper Case/

Number Graphic Upper/lower

Dec Hex Mode Case Mode

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

00

01

02

03

04

05

06

07

08

09

0A

0B

OC

0D

0E

OF

10

11

12

13

14

15

16

III
[o]

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

16

17

18

19

1A

IB

1C

ID

IE

IF

20

21

22

23

24

25

26

27

28

29

2A

2B

M

□

EE
E
□

7

418

Appendix E 419

Upper Case/

Number Graphic Upper/lower

Dec Hex Mode Case Mode

Upper Case/

Number Graphic Upper/lower

Dec Hex Mode Case Mode

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

0

U
H
e

-

DD

IZ
C

83 53

84 54

85 55

86 56

87 57

88 58

89 59

90 5A

91 5B

92 5C

93 5D

94 5E

95 5F

96 60

9-7 61

98 62

99 63

100 64

101 65

102 66

103 67

104 68

105 69

106 6A

107 6B

108 6C

109 6D

110 6E

111 6F

112 70

113 71

114 72

115 73

116 74

117 75

118 76

119 77

120 78

121 79

ffl
c

B
DC

i

E

T

□

□
n
u

i ■ i

B

a
I

H
n
a
c

□

m
□
OB

ffl
□
ffl

T

c
a
n
n

480 Appendix E

Upper Case/ Upper Case/

Number Graphic Upper/lower Number Graphic Upper/lower

Dec Hex Mode Case Mode Dec Hex Mode Case Mode

122

123

124

7A

7B

7C

u

a

0
B
a

125

126

127

7D

7E

7F

ffl

■■

ffl
E
S

Codes 128-255 display the reversed images of codes 0-127. To find the number to POKE to display a reversed

symbol, use the chart to find the number for the nonreversed symbol, and then add 128 to that number.

Appendix F

Note Tables

The decimal values used in the SOUND command to get five octaves of musical

notes are displayed in this table.

Note

A

A#

B

C

at

D

D#

E

F

F#

G

G#

Octave 1

Frequency

7

64

118

169

217

262

305

345

383

419

453

485

Octave 2

Frequency

516

544

571

596*

620

643

664

685

704

722

739

755

Octave 3

Frequency

770

784

798

810

822

834

844

854

864

873

881

889

Octave 4

Frequency

897

904

911

917

923

929

934

939

944

948

953

957

Octave 5

Frequency

960

964

967

971

974

976

979

982

984

986

988

990

*The setting for middle C.

Note: Use the following formula to calculate a note value for some other

output frequency (FO):

Frequency = 1024 - INT(111860.781/FO)

The hexadecimal values for sound and music programming in machine

language are displayed in the table on page 422.

421

422 Appendix F

Note

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

Octave 1

Frequency

7

40

76

A9

D9

106

131

159

17F

1A3

1C5

1E5

Octave 2

Frequency

204

220

23B

254

26C

283

298

2AD

2C0

2D2

2E3

2F3

Octave 3

Frequency

302

310

31E

32A

336

342

346

356

360

369

371

379

Octave 4

Frequency

381

388

38F

395

39B

3A1

3A6

3AB

3B0

3B4

3B9

3BD

Octave 5

Frequency

3C0

3C4

3C7

3CB

3CE

3D0

3D3

3D6

3D8

3DA

3DC

3DE

Appendix G

Plus/4 Memory Maps

Three different maps are presented. The first describes each of the registers of the

graphics chip. The second gives an overview of the Plus/4's memory usage. The

third gives as much detail as possible about each location in the Plus/4.

Graphics Chip Register Map

The graphics chip is located at $FFOO-$FF1F (65280-65311). The usage of each

register is described as completely as possible.

Hexadecimal

$FF00

$FF01

$FF02

$FF03

$FF04

SFF05

$FF06

$FF07

Decimal

65280

65281

65282

65283

65284

65285

65286

65287

Bits

0-7

0-7

0-7

0-7

0-7

0-7

0-2

3

4

5

6

7

0-2

3

4

5

6

7

Function

Low byte of reload value for timer 1

High byte of reload value for timer 1

Low byte of start value for timer 2

High byte of start value for timer 2

Low byte of start value for timer 3

High byte of start value for timer 3

Vertical screen scroll position

0 = 24 rows, 1 = 25 rows

0 = blank screen, 1 = display screen

Bit map mode: 0 = off, 1 = on

Extended color mode: 0 = off, 1 = on

TEST (should always be cleared to 0)

Horizontal screen scroll position

0 = 38 columns, 1 = 40 columns

Multicolor mode: 0 = off, 1 = on

Flashing: 0 = yes, 1 = no

TV standard: 0 = PAL, 1 = NTSC

Reverse characters through hardware:

0 = yes, 1 = no

483

484 Appendix G

Hexadecimal Decimal Bits Function

$FF08

SFF09

$FFOA

$FFOB

$FFOC

SFFOD

$FFOE

$FFOF

$FF1O

$FF11

$FF12

$FF13

$FF14

65288 0-7 Latch register for keyboard

65289 0 Not connected

1 Raster interrupt flag

2 Light pen interrupt flag

3 Timer 1 interrupt flag

4 Timer 2 interrupt flag

5 Not connected

6 Timer 3 interrupt flag

7 Interrupt occurred flag

65290 0 High bit for raster interrupt value

1 Raster interrupt enable

2 Light pen interrupt enable

3 Timer 1 interrupt enable

4 Timer 2 interrupt enable

5 Not connected

6 Timer 3 interrupt enable

7 Not connected

65291 0-7 Low byte for raster interrupt value

65292 0-1 High bits for hardware cursor position

2-7 Not connected

65293 0-7 Low byte for hardware cursor position

65294 0-7 Low byte of frequency for voice 1

65295 0-7 Low byte of frequency for voice 2

65296 0-1 High bits of frequency for voice 2

2-7 Not connected

65297 0-3 Volume: 0 = off, F = highest

4 Select voice 1

5 Select tone generator for voice 2

6 Select noise generator for voice 2

7 Sound reload switch: 0 = on , 1 = off

65298 0-1 High bits of frequency for voice 1

2 0 = get data from RAM, 1 = get data

from ROM

3-5 Base address for bit map

6-7 Not connected

65299 0 Status of clock

1 Single clock set

2-7 Base address for character data

65300 0-2 Not connected

3-7 Base address for color and screen

memory

Appendix 6 425

Hexadecimal Decimal Bits Function

$FF15

SFF16

$FF17

$FF18

$FF19

$FF1A

$FF1B

$FF1C

$FF1D

$FF1E

SFF1F

65301

65302

65303

65304

65305

65306

65307

65308

65309

65310

65311

0-3

4-6

7

0-3

4-6

7

0-3

4-6

7

0-3

4-6

7

0-3

4-6

7

0-1

2-7

0-7

0

1-7

0-7

0-7

0-2

3-6

7

Background color

Background luminance

Not connected

Color for color 1

Luminance for color 1

Not connected

Color for color 2

Luminance for color 2

Not connected

Color for color 3

Luminance for color 3

Not connected

Border color

Border luminance

Not connected

High bits for bit map reload

Not connected

Low byte for bit map reload

High bit of current vertical raster

position

Not connected

Low byte of current vertical raster

position

Current horizontal raster position

Vertical sub address

Blink address

Not connected

Memory Usage on the Plus/4

Memory Range

Hexadecimal Decimal Usage

$0000-50001

$0002-$00CF

$00D0-$00D7

$00D8-$00E8

$00E9-$00FF

$0100-$0122

S0123-S01FF

0-1

2-207

208-215

216-232

233-255

256-290

291-511

Processor on-chip data registers

System zero page storage

Zero page area reserved for speech software

Free zero page area for applications

System zero page storage

System storage

Processor stack

486 Appendix G

Memory Range

Hexadecimal Decimal Usage

$0200-$0258

$0259-$025C

$025D-$02AC

$02AD-$02CB

$02CC-$02E3

$02E4-$02Fl

$02F2-$02F5

$02F6-$02FD

$02FE-$0331

$0332-$03F2

$03F3-$03F6

$03F7-$0436

$0437-50472

$0473-$04E6

$04E7-$0508

$0509-$054A

$054B-$055C

$055D-$05E6

$05E7-$05EB

$05EC-$05EF

$05F0-$05F4

$05F5-$06EB

$06EC-$07AF

$07B0-$07Fl

$07F2-$07FF

$0800-$0BE7

$0BE8-$0BFF

$0C00-$0FE7

$0FE8-$0FFF

$1000-$3FFF

$1000-$17FF

$18OO-$1BE7

$1BE8-$1BFF

$1COO-$1FE7

$1FE8-$1FFF

$2000-$3F3F

$3F40-$3FFF

$4000-$7FFF

512-600 Input buffer for BASIC and the monitor

601-604 BASIC storage

605-684 Storage for DOS information

685-715 BASIC graphics storage

716-739 BASIC work area

740-753 BASIC graphics storage

754-757 BASIC pointers

758-765 Free

766-817 System vectors

818-1010 Cassette buffer

1011-1014 Storage for cassette information

1015-1078 RS232 buffer

1079-1138 Storage for cassette information

1139-1254 BASIC RAM subroutines

1255-1288 BASIC storage

1289-1354 System storage

1355-1372 Monitor storage

1373-1510 Function key area

1511-1515 Storage for DMA information

1516-1519 Cartridge address table

1520-1524 Long jump routine and storage

1525-1771 RAM for speech and cartridges

1772-1967 BASIC stack

1968-2033 System 1/ O storage

2034-2047 System storage

2048-3047 Color memory

3048-3071 Free

3072-4071 Screen memory

4072-4095 Free

4096-16383 RAM used by BASIC (in text mode)

4096-6143 Free (in BASIC graphics mode)

6144-7143 Luminance memory (in BASIC graphics

mode)

7144-7167 Free (in BASIC graphics mode)

7168-8167 Color memory (in BASIC graphics mode)

8168-8191 Free (in BASIC graphics mode)

8192-16191 Graphics screen (in BASIC graphics mode)

16192-16383 Free (in BASIC graphics mode)

16384-32767 RAM used by BASIC

Appendix O 487

Memory Range

Hexadecimal Decimal Usage

$8000-$FCFF

$8000-$CDFF

$CE00-$CFFF

$D000-$D7FF

$D800-$FBFF

$FC00-$FCFF

$FD00-$FD0F

$FD1O-$FD1F

$FD20-$FDCF

$FDD0-$FDDF

$FDE0-$FEFF

$FF00-$FF3F

$FF40-$FFFF

$FF40-$FFFF

32768-64767 RAM used by BASIC (under ROM)

32768-52735 BASIC and monitor ROM

52735-53247 Operating system ROM

53248-55295 Character ROM

55296-64511 Operating system ROM

64512-64767 Banking routines ROM (in all ROM

maps)

64768-64783 ACIA cjrip (used for RS232, in all maps)

64784-64799 Parallel port (6529, in all maps)

64800-64975 Unknown (in all maps)

64976-64991 Cartridge banking port (in all maps)

64992-65279 Direct Memory Access disk (in all maps)

65280-65343 Graphics chip (in all maps)

65344-65535 RAM (under ROM)

65344-65535 Operating system ROM

Detailed Memory Map of the Plus/4

Memory Location(S)

Hexadecimal Decimal

$0000

$0001

$0002

$0003-$0006

$0007

$0008

$0009

$000A

$000B

$000C

$000D

$000E

$000F

0

1

2

3-6

7

8

9

10

11

12

13

14

15

Usage

Processor on-chip data direction register

Processor on-chip data register

BASIC token to search for in BASIC stack

Storage for RENUMBER

Start character to search for in BASIC text

End character to search for in BASIC text

Save last TAB column

Flag for load ($00) or verify ($01)

Buffer pointer for input/number of

subscripts

Flag for default array dimension

Flag for data type ($00=numeric,

$FF=string)

Flag for data type ($00=floating,

$80=integer)

Flag for garbage collect/ DATA scan/

LIST quote

428 Appendix C

Memory Location(S)

Hexadecimal Decimal Usage

$0010

$0011

$0012

$0013

$0014-$0015

$0016

$0017-$0018

$0019-$0021

$0022-$0025

$0026-$002A

$002B-$002C

$002D-$002E

$002F-$0030

$0031-$0032

$0033-$0034

$0035-$0036

$0037-$0038

$0039-$003A

$003B-$003C

$003D-$003E

$003F-$0040

$0041-$0042

$0043-$0044

$0045-$0046

$0047-$0048

$0049-$004A

$004B-$0060

$0061

$0062-$0065

$0066

$0067

$0068

$0069

$006A-$006D

$006E

16

17

18

19

20-21

22

23-24

25-33

34-37

38-42

43-44

45-46

47-48

49-50

51-52

53-54

55-56

57-58

59-60

61-62

63-64

65-66

67-68

69-70

71-72

73-74

75-96

97

98-101

102

103

104

105

106-109

110

Flag for subscript/ FNx function

Flag for input ($00=INPUT, $40=GET,

$98=READ)

Sign of TAN/comparison flag

Flag for I/O prompt

Integer value

Pointer to temporary string stack

Address of last temporary string

Stack for temporary strings

Utility pointers

Floating point result of multiply

Pointer to start of BASIC text

Pointer to start of variables in

BASIC RAM

Pointer to start of arrays in BASIC RAM

Pointer to end of arrays in BASIC RAM

(+D
Pointer to bottom of strings in BASIC

RAM

Pointer to current string

Pointer to top of BASIC RAM (+1)

Current BASIC line number

Pointer to current BASIC text

Pointer to BASIC stack for CONT

Current line number in DATA

Current address of DATA item

Vector to INPUT

Name of current variable

Address of current variable

Pointer to FOR/NEXT index

Temporary storage area

Floating point accumulator 1, exponent

Floating point accumulator 1, mantissa

Floating point accumulator 1, sign

Series evaluation constant pointer

Floating point accumulator 1, overflow

Floating point accumulator 2, exponent

Floating point accumulator 2, mantissa

Floating point accumulator 2, sign

Appendix G 489

Memory Location(S)

Hexadecimal Decimal Usage

$006F 111

$0070

$0071-50072

$0073-$0074

$0075

$0076-$0077

$0078

$0079-$007B

$007C-$007D

$007E-$007F

$0080

$0081

$0082

$0083

$0084

$0085

$0086

$0087

$0088

$0089

$008A

$008B

$008C-$008D

$008E

$008F

$0090

$0091

$0092

$0093

$0094

$0095

$0096

$0097

$0098

112

113-114

115-116

117

118-119

120

121-123

124-125

126-127

128

129

130

131

132

133

134

135

136

137

138

139

140-141

142

143

144

145

146

147

148

149

150

151

152

Sign comparison of FPA 1 and

FPA 2/pointer

Floating point accumulator 2, overflow

Cassette buffer/series pointer

Increment for AUTO ($00=none)

Flag for graphics area ($00=no, $FF=yes)

Key work area

Temporary storage for indirect load

Disk error message descriptor

BASIC stack pointer

Temporary storage for sounds

Temporary parameter storage

Flag for RUNning ($00=no, $80=yes)

Flag used for DOS commands

Graphic mode ($00=text, $20=high-res,

$60=split high-res, $A0=multicolor,

$E0=split multicolor)

Current color source for drawing

Current color/luminance for COLOR 2

Current color/luminance for COLOR 1

Maximum number of screen columns

Maximum number of screen rows

Flag for PAINT (left)

Flag for PAINT (right)

Flag for PAINT border ($00=same color,

$80=nonbackground color)

Pointer to bit map color information

Temporary storage

Temporary storage

I/O status word (ST)

STOP key flag

Temporary storage

Flag for load ($00) or verify ($01)

Flag for buffered serial output ($00=no,

$80=yes)

Buffered serial output byte

Save .X for BASIN

Count of open logical files

Current input device

430 Appendix 6

Memory Location(S)

Hexadecimal Decimal Usage

$0099

$009A

$009B-$009C

$009D-$009E

$009F-$00A0

$00Al-$00A2

$OOA3-$OOA5

$00A6

$00A7

$00A8

$00A9-$00AA

SOOAB

SOOAC

$00AD

$00AE

$00AF-$00B0

$OOB1

$00B2-$00B3

$00B4-$00B5

$00B6-$00B7

$00B8-$00B9

$00BA-$00BB

$00BC-$00BD

$OOBE-$OOBF

$00C0-$00Cl

S00C2

S00C3

S00C4

S00C5

S00C6

$00C7

$00C8-$00C9

$00CA

$00CB

SOOCC

153

154

155-156

157-158

159-160

161-162

163-165

166

167

168

169-170

171

172

173

174

175-176

111

178-179

180-181

182-183

184-185

186-187

188-189

190-191

192-193

194

195

196

197

198

199

200-201

202

203

204

Current output device

Flag for message output ($00=program,

$80=BASIC direct mode, $C0=monitor)

Current SAVE address

End SAVE address (+1)/LOAD address

Temporary storage

Vector for monitor

System clock

Part of serial bus EOI count

Buffered tape I/O byte

Buffered serial input byte

Color vector for scrolling/temporary

storage

Current file name length

Number of current logical file

Secondary address of current logical file

Device number of current logical file

Pointer to name of current logical file

Count of tape errors

Begin SAVE address

Relocated LOAD address

Pointer for cassette buffer

Address for VECTOR

Temporary storage for cassette I/O

Pointer for tape messages

Pointer to fetch byte for ROM banking

Text vector for scrolling/temporary

storage

Flag for reversed text ($00=off, $12=on)

Last cursor column for input

Temporary cursor line pointer

Temporary cursor column pointer

Flag for shift/control key input

Flag for input from keyboard ($00) or

screen ($03)

Address of current screen line

Current cursor column

Flag for quote mode ($00=no, $01=yes)

Temporary storage for editor

Appendix 6 431

Memory Location(S)

Hexadecimal Decimal Usage

$00CD

$00CE

SOOCF

$00D0-$00D7

$00D8-$00E8

$00E9

$00EA-$00EB

$00EC-$00ED

SOOEE

SOOEF

SOOFO

$00Fl-$00F4

SOOF5

$00F6

S00F7

SOOF8

$00F9

$00FA

SOOFB

$00FC

$00FD

SOOFE

SOOFF

$0100-$010F

$0110-$0112

$0113-50122

$0123-$01FF

$0200-$0258

$0259-$025A

$025B-$025C

$025D

$025E-$026D

$026E

$026F

$0270-50271

205

206

207

208-215

216-232

233

234-235

236-237

238

239

240

241-244

245

246

247

248

249

250

251

252

253

254

255

256-271

272-274

275-290

291-511

512-600

601-602

603-604

605

606-621

622

623

624-625

Current cursor line

Last character input

Counter for insert mode characters

Zero page area reserved for speech

software

Free zero page area for applications

Segment size for CIRCLE

Address of current color line

Indirect for key scan table

Temporary storage for key scan

Keyboard queue index

Flag for screen I/O pause (CTRL S/T)

Zero page area for monitor

Cassette I/O checksum

Zero page location for monitor

Pass number for cassette 1/ O

Type of cassette block

Flag for DMA disk ($00=not present,

$80=present)

Temporary storage for .X during stop key

check

Number of ROM bank currently enabled

X-on character for RS232 I/O

X-off character for RS232 I/O

Temporary storage for cursor line in editor

Used as base address for indexing forward

Floating point operation buffer

Temporary storage for .A, .X, .Y during

I/O

RAM color/luminance table for color keys

Processor stack

Input buffer

Last BASIC line number

Last BASIC text pointer

Loop counter for DOS

Buffer for disk file name

Length of disk file name 1

Drive for disk file 1

Address of disk file name 1

432 Appendix 6

Memory Location(S)

Hexadecimal Decimal Usage

$0272

$0273

$0274-$0275

$0276

$0277

$0278

$0279-$027A

$027B

$027C

$027D-$02AC

$02AD-$02AE

$02AF-$02B0

$02Bl-$02B2

$02B3-$02B4

$02B5-$02C4

$02C5

$02C6-$02C7

$02C8-$02C9

$02CA-$02CB

$02CC-$02E3

$02E4

$02E5

$02E6

$02E7

$02E8

$02E9

$02EA

$02EB

$02EC-$02EE

$02EF

$02F0

$O2F1

$02F2-$02F3

$02F4-$02F5

$02F6-$02FD

$02FE-$02FF

626

627

628-629

630

631

632

633-634

635

636

637-684

685-686

687-688

689-690

691-692

693-708

709

710-711

712-713

714-715

716-739

740

741

742

743

744

745

746

747

748-750

751

752

753

754-755

756-757

758-765

766-767

Length of disk file name 2

Drive for disk file 2

Address of disk file name 2

Logical address for DOS

Physical address for DOS

Secondary address for DOS

Disk identifier

Flag for disk id specified

Buffer for disk output string

Disk output string area

Graphics current x-coordinate

Graphics current ^-coordinate

Final ^-coordinate

Final ^-coordinate

Graphics calculation area

Current angle's sign

Current angle's sine

Current angle's cosine

Temporary storage for distance routines

PRINT USING/CIRCLE/SHAPE work

area

CHAR command character ROM address

Temporary storage for GSHAPE

Flag for SCALE ($00=off, $01=on)

Flag for double width

Flag for BOX fill

Temporary storage of bit mask

Length of string

Flag for TRON ($00=off, $FF=on)

Temporary storage for DIRECTORY

Temporary storage for graphics

Count of graphics parameters

Flag for relative or absolute

Vector for floating point to integer

conversion

Vector for integer to floating point

conversion

Free

Vector for cartridge software startup

Appendix 6 433

Memory Location(S)

Hexadecimal

$0300-$0301

$0302-$0303

$0304-$0305

$0306-50307

$0308-$0309

$O3OA-$O3OB

$030C-$030D

$O3OE-$O3OF

$0310-$0311

$0312-$0313

$0314-$0315

$0316-$0317

$0318-50319

$031A-$031B

$031C-$031D

$031E-$031F

$0320-50321

$0322-$0323

$0324-$0325

$0326-$0327

$0328-$0329

$032A-$032B

$032C-$032D

$032E-$032F

$0330-$0331

$0332-$03F2

$03F3-$03F4

$03F5-$03F6

$03F7-$0436

$0437-$0454

$0455-$0472

$0473-$0478

$0479-$0484

$0485-$0493

$0494-$04Al

$04A2-$04A4

Decimal

768-769

770-771

772-773

774-775

776-777

778-779

780-781

782-783

784-785

786-787

788-789

790-791

792-793

794-795

796-797

798-799

800-801

802-803

804-805

806-807

808-809

810-811

812-813

814-815

816-817

818-1010

1011-1012

1013-1014

1015-1078

1079-1108

1109-1138

1139-1144

1145-1156

1157-1171

1172-1185

1186-1188

Usage

Vector for error routine

Vector for BASIC warm start

Vector for tokenization routine

Vector for token PRINT

Vector to execute BASIC code

Vector for arithmetic symbol evaluation

Vector to escape token crunch routine

Vector to escape token PRINT routine

Vector to escape execute routine

Vector for vertical blank IRQ routine

Vector for IRQ routine

Vector for BRK instruction processing

Vector for OPEN

Vector for CLOSE

Vector for CHKIN

Vector for CHOUT

Vector for CLRCH

Vector for BASIN

Vector for BSOUT

Vector for STOP

Vector for GETIN

Vector for CLALL

Free vector

Vector for LOADSP

Vector for SAVESP

Buffer for cassette I/O

Number of characters to write to tape

Number of characters to read from tape

RS232 buffer

Cassette I/O error stack (low bytes)

Cassette I/O error stack (high bytes)

Entry to get next character from BASIC

text RAM

Entry to get same character from BASIC

text RAM

Entry to check for numeric input

Self-modifying routine to fetch RAM

data via (.A),Y

Zeroes

434 Appendix G

Memory Location(S)

Hexadecimal Decimal Usage

$04A5-$04AF 1189-1199

$04B0-$04BA

$04BB-$04C5

$04C6-$04D0

$04Dl-$04DB

$04DC-$04E6

$04E7

S04E8

$04E9

$04EA

$04EB-$04EE

$04EF

$04F0-$04Fl

$04F2-$04F3

$04F4

$04F5-$04F6

$04F7

$04F8-$04F9

$04FA-$04FB

$04FC

$04FD

$04FE

$04FF

$0500-$0502

$0503-50507

$0508

$0509-$0512

$0513-$051C

$051D-$0526

$0527-$0530

$0531-$0532

$0533-$0534

$0535

$0536

$0537

$0538

$0539

$053A

1200-1210

1211-1221

1222-1232

1233-1243

1244-1254

1255

1256

1257

1258

1259-1262

1263

1264-1265

1266-1267

1268

1269-1270

1271

1272-1273

1274-1275

1276

1277

1278

1279

1280-1282

1283-1287

1288

1289-1298

1299-1308

1309-1318

1319-1328

1329-1330

1331-1332

1333

1334

1335

1336

1337

1338

Fetch RAM via BASIC text pointer

($3B),Y

Fetch RAM from ($22),Y

Fetch RAM from ($24),Y

Fetch RAM from ($6F),Y

Fetch RAM from ($5F),Y

Fetch RAM from ($64),Y

PRINT USING symbol for blank

PRINT USING symbol for comma

PRINT USING symbol for decimal point

PRINT USING symbol for dollar sign

Temporary storage for string functions

Number of latest error

Line number of latest error

TRAP line

Temporary storage for TRAP

BASIC text pointer at latest error

BASIC stack pointer at latest error

DO storage of BASIC text pointer

DO storage of line number

Low byte of sound 1 duration

Low byte of sound 2 duration

High byte of sound 1 duration

High byte of sound 2 duration

USR function jump instruction

Random number registers

Checked for cold/warm start ($A5=warm)

Table of OPEN logical file numbers

Table of OPEN device numbers

Table of OPEN secondary addresses

Keyboard queue

Bottom of memory

Top of memory

Timeout flag (DMA)

EOF flag (DMA)

Number of bytes in buffer

Valid bytes in buffer

Pointer to buffer

Type of current tape file

Appendix G 439

Memory Location(S)

Hexadecimal Decimal Usage

$053B

$053C

S053D

$053E

$053F

$0540

$0541-50542

$0543

$0544

$0545-$0546

$0547

$0548

$0549-$054A

$054B-$0551

$0552-$0558

$0559-$055C

$055D

$055E

$055F-$0566

$0567-$05E6

$05E7

$05E8

$05E9

$05EA

$05EB

$05EC-$05EF

$05F0-$05Fl

$05F2

$05F3

$05F4

1339

1340

1341

1342

1343

1344

1345-1346

1347

1348

1349-1350

1351

1352

1353-1354

1355-1361

1362-1368

1369-1372

1373

1374

1375-1382

1383-1510

1511

1512

1513

1514

1515

1516-1519

1520-1521

1522

1523

1524

Current character color/luminance

Current character flash flag ($00=no,

$80=yes)

Free

Screen memory start (high byte)

Length of keyboard queue

Flag for key repeat ($80=all keys repeat,

$40=no keys repeat,

$00=space,INST/DEL, and cursor

keys repeat)

Counters for key repeats

Flag for shift key

Pattern of last shift

Vector for keyboard table

Commodore SHIFT enable ($00=enabled,

$80=disabled)

Flag for scrolling (not used)

Temporary storage during screen output

Storage for monitor

Register storage for monitor

(PC,SR,A,X,Y,SP)

Storage for monitor

Number of characters left to get from

function key definition

Pointer to current character in function

key definition

Table of lengths of function key definitions

Function key definitions

Temporary storage for data write (DMA)

Read or write (DMA)

Device number (DMA)

Presence flag (DMA)

Temporary storage for open type (DMA)

Table of physical addresses for cartridge

ROMs

Long jump for banking routines

.A for long jump

.X for long jump

.Yfor long jump

436 Appendix G

Memory Location(S)

Hexadecimal Decimal Usage

$05F5-$065D

$065E-$06EB

$06EC-$07AF

SO7BO

S07B1

$07B2-$07B3

S07B4

$07B5

S07B6

S07B7

$07B8-$07BD

S07BE

$07BF

$07C0-$07C3

$07C4

$07C5

$07C6

$07C7

$07C8-$07CC

$07CD

$07CE

$07CF

S07D0

1525-1629

1630-1771

1772-1967

1968

1969

1970-1971

1972

1973

1974

1975

1976-1981

1982

1983

1984-1987

1988

1989

1990

1991

1992-1996

1997

1998

1999

2000

$O7D1

$07D2

2001

2002

S07D3

$07D4

$07D5

$07D6

$07D7

$07D8

$07D9-$07E4

2003

2004

2005

2006

2007

2008

2009-2020

$07E5 2021

Banking RAM area

RAM reserved for speech software

BASIC stack

Tape byte to write

Temporary parity calculation byte

Temporary storage for tape header write

Free

Temporary index for reading bytes

Pointer to error stack

Count of errors on initial pass

Constants for timing

Pointer to stack for STOP recover

Pointer to stack for drop key recover

Read block parameters

Temporary status for read block

Count of leader shorts to find

Count of read errors fatal

Temporary storage for VERIFY

Temporary storage for tape I/O

RS232 data character to send buffer

RS232 flag for data character to send

($00=no, $80=yes)

RS232 control character to send buffer

RS232 flag for control character to send

($00=no, $80=yes)

RS232 pointer to current start of input

queue

RS232 pointer to current end of input

queue

RS232 current count of input queue

RS232 status

RS232 temporary storage of character

input

RS232 flag for local hold off

RS232 flag for remote hold off

RS232 flag for presence of ACIA

Indirect indexed RAM fetch routine via

contents of $07DF

Bottom screen line of current window

Appendix G 437

Memory Location(S)

Hexadecimal Decimal Usage

$07E6

$07E7

S07E8

$07E9

$07EA

S07EB

$07EC

S07ED

$O7EE-$O7F1

$07F2

S07F3

$07F4

S07F5

$07F6

S07F7

SO7F8

$07F9

$07FA

$07FB

S07FC

S07FD

$07FE-$07FF

$0800-$0BE7

$0BE8-$0BFF

$0C00-$0FE7

$0FE8-$0FFF

$1000-$3FFF

$1000-$17FF

$18OO-$1BE7

$1BE8-$1BFF

$1COO-$1FE7

$1FE8-$1FFF

$2000-$3F3F

2022

2023

2024

2025

2026

2027

2028

2029

2030-2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046-2047

2048-3047

3048-3071

3072-4071

4072-4095

4096-16383

4096-6143

6144-7143

7144-7167

7168-8167

8168-8191

8192-16191

Top screen line of current window

Left screen column of current window

Right screen column of current window

Flag to disable scrolling ($00=scroll,

$80=don't)

Auto insert flag ($00=off, $FF=on)

Latest character printed

Storage for screen line management

Color under cursor

Line link table for screen

.A to send to SYS

.X to send to SYS

.Y to send to SYS

Status register to send to SYS

Index for key scan

Flag for control S/T ($00=enabled, else

disabled)

Bank for monitor fetches ($00=ROM,

$80=RAM)

Bank for color key color/ luminance value

table ($00=RAM ($0113-S0122),

$80=ROM)

Bit map mask for split screen

Screen memory mask for split screen

Cassette motor lock signal

Time-of-day for PAL (not used)

Free

Color memory

Free

Screen memory

Free

RAM used by BASIC (in text mode)

Free (in BASIC graphics mode)

Luminance memory (in BASIC graphics

mode)

Free (in BASIC graphics mode)

Color memory (in BASIC graphics mode)

Free (in BASIC graphics mode)

Graphics screen (in BASIC graphics

mode)

438 Appendix G

Memory Location(S)

Hexadecimal

$3F40-$3FFF

$4000-$7FFF

$8000-$FCFF

$8000-$CDFF

$CE00-$CFFF

$D000-$D7FF

$D800-$FBFF

$FC00-$FCFF

$FCF1-$FCF3

$FCF4-$FCF6

$FCF7-$FCF9

$FCFA-$FCFC

$FCFD-$FCFF

$FD00-$FD0F

$FD1O-$FD1F

$FD20-$FDCF

$FDD0-$FDDF

$FDE0-$FEFF

$FF00-$FF3F

$FF40-$FFFF

$FF40-$FFFF

$FF49-$FF4B

$FF4C-$FF4E

$FF4F-$FF51

$FF52-$FF55

SFF80

$FF81-$FF83

$FF84-$FF86

$FF87-$FF89

$FF8A-$FF8C

$FF8D-$FF8F

$FF90-$FF92

$FF93-$FF95

$FF96-$FF98

$FF99-$FF9B

$FF9C-$FF9E

$FF9F-$FFA1

$FFA2-$FFA4

Decimal

16192-16383

16384-32767

32768-64767

32768-52735

52736-53247

53248-55295

55296-64511

64512-64767

64753-64755

64756-64758

64759-64761

64762-64764

64765-64767

64768-64783

64784-64799

64800-64975

64976-64991

64992-65279

65280-65343

65344-65535

65344-65535

65353-65355

65356-65358

65359-65361

65362-65364

65408

65409-65411

65412-65414

65415-65417

65418-65420

65421-65423

65424-65426

65427-65429

65430-65432

65433-65435

65436-65438

65439-65441

65442-65444

Usage

Free (in BASIC graphics mode)

RAM used by BASIC

RAM used by BASIC (under ROM)

BASIC and monitor ROM

Operating system ROM

Character ROM

Operating system ROM

Banking routines ROM (in all ROM

maps)

Jump to interrupt routine for cartridge

Jump to cartridge reenable routine

Jump to long fetch routine

Jump to long jump routine

Jump to long interrupt routine

ACIA chip (used for RS232, in all maps)

Parallel port (6529, in all maps)

Unknown (in all maps)

Cartridge banking port (in all maps)

Direct Memory Access disk (in all maps)

Graphics chip (in all maps)

RAM (under ROM)

Operating system ROM

Jump to function key definition routine

Jump to PRINT routine

Jump to print message routine

Jump to monitor

Version number of operating system

ROM (most significant bit 0=NTSC,

1=PAL)

Jump to CINT

Jump to IOINIT

Jump to RAMTAS

Jump to RESTOR

Jump to VECTOR

Jump to SETMSG

Jump to SECND

Jump to TKSA

Jump to MEMTOP

Jump to MEMBOT

Jump to SCNKEY

Jump to SETTMO

Appendix 6 439

Memory Location(S)

Hexadecimal

$FFA5-$FFA7

$FFA8-$FFAA

$FFAB-$FFAD

$FFAE-$FFB0

$FFB1-$FFB3

$FFB4-$FFB6

$FFB7-$FFB9

$FFBA-$FFBC

$FFBD-$FFBF

$FFC0-$FFC2

$FFC3-$FFC5

$FFC6-$FFC8

$FFC9-$FFCB

$FFCC-$FFCE

$FFCF-$FFD1

$FFD2-$FFD4

$FFD5-$FFD7

$FFD8-$FFDA

$FFDB-$FFDD

$FFDE-$FFE0

$FFE1-$FFE3

$FFE4-$FFE6

$FFE7-$FFE9

$FFEA-$FFEC

$FFED-$FFEF

$FFF0-$FFF2

$FFF3-$FFF5

$FFF6-$FFF8

SFFF9

$FFFA-$FFFB

$FFFC-$FFFD

$FFFE-$FFFF

Decimal

65445-65447

65448-65450

65451-65453

65454-65456

65457-65459

65460-65462

65463-65465

65466-65468

65469-65471

65472-65474

65475-65477

65478-65480

65481-65483

65484-65486

65487-65489

65490-65492

65493-65495

65496-65498

65499-65501

65502-65504

65505-65507

65508-65510

65511-65513

65514-65516

65517-65519

65520-65522

65523-65525

65526-65528

65529

65530-65531

65532-65533

65534-65535

Usage

Jump to ACPTR

Jump to CIOUT

Jump to UNTLK

Jump to UNLSN

Jump to LISTN

Jump to TALK

Jump to READSS

Jump to SETLFS

Jump to SETNAM

Jump to OPEN

Jump to CLOSE

Jump to CHKIN

Jump to CHOUT

Jump to CLRCH

Jump to BASIN

Jump to BSOUT

Jump to LOADSP

Jump to SAVESP

Jump to SETTIM

Jump to RDTIM

Jump to STOP

Jump to GETIN

Jump to CLALL

Jump to UDTIM

Jump to SCRORG

Jump to PLOT

Jump to IOBASE

Bank in ROM

Jump opcode

Vector (used for reset, not NMIs)

RESET vector

IRQ vector

User Groups

More information on using your Plus/4 is available in a number of magazines.

Commodore's magazines list User Groups for owners ofCommodore computers.

Many of them welcome Plus/4 users. Mr. Calvin Demmon contacted us about

his group that specializes in the Plus/4. You can contact them at this address

The Plus/4 Users' Group

Box 1001

Monterey, CA 93940

Index

A (assemble) command, 228-229

Abbreviations of BASIC commands, 10-12

ABS, 13-14

Absolute indexed mode, 295-296

Absolute mode, 294

Accessing file manager records, 114, 118, 119, 148

Accumulator, 240, 244-245, 248-249

ACPTR, 308

ADC instruction, 242-244

Addition, double precision (machine language), 243,

246

Addressing modes, 293-297

AND, 7

AND instruction, 244-245

Animation, 212-219

Arcs, 21-23

Arctangent, 14-15

Arithmetic operators

BASIC, 5

spreadsheet, 120-121

Arrays, 12-13, 31-32, 180-182

ASC, 14,21, 113

ASCII, 113

ASCII codes, 416-417

ASL instruction, 245-246

Assemble (A) command, 228-229

ATN, 14-15

AUTO command, 15

AUTO mode (spreadsheet), 122

Automatic insert mode, 159-160

Automatic line numbering, 15

BACKUP, 16-17,27-28

BAM, 339

Banking, 303-304

BASIC error messages, 395-405

BASIC tokens, 406-407

BASIN, 312

BCC instruction, 246-247

BCS instruction, 247

BEQ instruction, 247-248

BIT instruction, 248-249

Bit-mapping, 45-47, 222-224, 225-226

BLKMAP command (spreadsheet), 122-123

Block allocate (B-A), 339-340

Block execute (B-E), 342-344

Block free (B-F), 340-341

Block read (Ul), 337-338

Block write (U2), 338-339

Blocks of text

BASIC (using Escape functions), 159-161

creating (word processor), 102-103

deleting (word processor), 103-104

inserting (word processor), 106

moving, 122-123, 133-135

BMI instruction, 249

BNE instruction, 250

BOX, 17-18, 198

BPL instruction, 250-251

Branching programs, 45, 49-51, 63-64

BRK instruction, 251-252

BSOUT, 312

Buffer Pointer (B-P), 341-342

Built-in software

bar graphs, 100

command mode, 98-99

file manager commands, 140-149

formatting disks, 99-100

formatting printed documents, 112-120

point graphs, 101

screen colors, 99, 125

spreadsheet commands, 120-140

switching between programs, 98, 112, 139, 148

word processor commands, 101-120

BVC instruction, 252

BVS instruction, 252-253

C (compare) command, 229-230

CA (built-in software), 102, 123, 141

Canceling

half-screen mode (built-in programs), 103, 104,

129

other modes, 158

Carry bit, 242-244, 246-247

440

Index 441

Cassette recorder, 360-371

CLOSE, 23-24, 368-369

loading programs, 59-60, 362

machine language, 364-371

OPEN, 64-66, 368

positioning a tape (VERIFY), 96, 362-363,

367-368

saving programs, 83-84, 362

Catalog (disk), 32-33, 102, 123, 141, 332

CB command (built-in software), 102-103

CCO command (spreadsheet), 124

CDEL command (spreadsheet), 124

Cell (spreadsheet), 120

CENTER instruction (word processor), 114

Chaining programs, 34, 60

Changing 6502 registers (; command), 234-235

Changing memory contents (> command), 234-235

CHAR, 18-20, 190

Character animation, 212-215

Character codes, 14, 20-21

Character modes, 374-375

Character sets, 200-209

expanding, 220

Character strings, 3-4, 10, 53-54, 56-57, 61-62, 81,

91,95

Characters, 220-222, 224-225

CHKIN, 311

CHOUT, 311

CHR$ function, 14,20-21,55

CHR$ codes, 14, 20-21, 408-415, 416, 418

CINS command (spreadsheet), 124

CINT, 306

CIOUT, 308

CIRCLE, 21-23

CLALL, 315

CLC instruction, 253

CLD instruction, 254

Clearing

files (COLLECT), 25, 334

graphic mode screens, 45-47, 85, 156, 188

memory (built-in programs), 103, 137-138

memory (NEW), 62

RESET (spreadsheet), 137-138

SCNCLR command, 85, 156

variables, 24

CLI instruction, 254-255

Clock (system), 93,314

CLOSE, 23-24, 326

CLOSE (machine language), 311, 355, 359-360,

368-369, 377, 389

CLR, 24

CLRCH, 312

CLV instruction, 255

CM command (built-in programs), 103, 125

CMD, 24-25

CMP instruction, 255-257

COLLECT, 25, 334

Color

character color, 25-27

COLOR command (BASIC), 24-27, 186-189,

193-194, 196

COLOR command (spreadsheet), 99, 125

color sources, 17, 25-27, 66-67

functions, 75, 81-82

graphic modes, 17, 26, 66-67

luminance, 25-27,81-82, 186-188

PAINT, 66-67

programming (BASIC), 186-188

of screen, 25-27, 125

Color keys, 155, 189

Columns (spreadsheet)

deleting (CDEL), 124

inserting blank columns (CINS), 125

Command line length (BASIC), 10, 152

Command mode (built-in programs), 98-99

Commas, 69-76

Comments in programs (REM), 77

Compare (C) command, 229-230

Comparison operators, 6, 50, 131

Conditional commands (BASIC), 34-36, 40-42,

49-51, 63-64

Conditional commands (spreadsheet), 121, 131-132,

135-136, 140

CONT, 27

Converting numbers, 30, 49

Coordinates, 192-193, 195-196, 197-199

COPY (BASIC), 27-28

COPY (spreadsheet), 126

Copying

a disk, 16-17,27-28,335-337

cell entries, 124, 126, 136-137

COS, 29

CP command (word processor), 103

CPX instruction, 257-258

CPY instruction, 258-259

Crunching programs, 10-13

CT command (word processor), 103

Cursor control

escape functions, 158

half-screen mode (built-in programs), 105-106

pixel cursor, 36-38, 60-61, 197-199

POS function, 68

spreadsheet, 120, 129, 130

Word processor, 101-102

Cursor position, 68, 315

Custom character sets, 200-209

D (disassemble) command, 230-231

DATA command, 29-30, 76, 79

Data files, 325-332, 354-360, 363-364, 368-371

442 Index

Datatypes, 3-4

Database program. See File manager.

Datassette, 360-371

DB command (word processor), 103-104

Debugging programs, 39, 80, 94-95, 185

DEC, 30

DEC instruction, 259-260

Decimal mode, 280-281,292-293

additional example, 254

DEF FN, 30-31

Default, 2

Defining

function keys, 55-56

functions, 30-31

Deleting

blocks of text (word processor), 103-104

cell entries, 124, 137

DELETE, 31

files (BASIC), 85-86, 334

files (built-in programs), 104, 126

lines (BASIC), 160-161

lines (word processor), 104

ce numbers, 65

DEX instruction, 261

DEY instruction, 259-260

DF command (built-in programs), 104, 126

DIM, 31-32, 180-181

Dimensioning arrays, 31-32, 180-181

Direct-access programming, 335-337

DIRECTORY command, 32-33, 123, 141, 332

Disassemble (D) command, 230-231

Diskdrives, 323-360

CLOSE, 23-24, 311, 355, 359-360

deleting files, 85-86, 334, 347-350

directories, 32-33, 123, 141, 332

drive status, 38

error numbers, 38, 400-405

formatting, 48-49, 99-100, 332-333

initializing, 130-131,333

loading (BASIC), 34, 324-325

loading (built-in software), 107-108

machine language, 350-360

OPEN, 64-66, 325-326

RAM, accessing, 342-347

saving (BASIC), 38-39, 83-84, 324-325

saving (built-in software), 110-111

unSCRATCHing files, 347-350

verifying, 96, 324-325

Disk maintenance, 331-332

Disk sorts (file manager), 141-142

Displaying text

CHAR, 18-20, 190

PRINT, 19,68-70, 190

PRINT USING, 71-73, 74, 190

PUDEF, 71,74-76

Displaying records (file manager), 146, 147

Division by two (example), 276

DL command (word processor), 104

DLOAD, 34, 59, 325

DO ... WHILE/UNTIL . . . LOOP, 34-36

Document printing (word processor), 108-109,

113-120

Documenting programs (REM), 77

Dollar format (spreadsheet), 140

DOS, 323-324

DOS error messages, 400-405

Dot mode, 375-376

DRAW, 36-38

DS (BASIC), 38

DS (file manager), 141-142

DS$, 38

DSAVE, 38-39, 324-325

Duplicating a disk, 16-17,27-28

Duration of a sound, 87-88

EL, 39

ELSE, 39, 50-52

END, 39

EOF? instruction (file manager), 114

EOR instruction, 261-263

EP command (word processor), 103, 104

ER, 39

ERRS, 39

Errors

BASIC error messages, 395-399 ^
debugging, 39,94-95

disk drive errors, 38, 324, 400-405

DOS error message, 400-405

trapping routines, 39, 80, 94, 185

Escape key functions

editing the screen, 159-161

features, 156-163

reducing screen-display size, 161

screen windows, 162

use in programs, 162-163

Exclusive OR (XOR), 9-10, 97

Execute (G) command, 231-232

Execution times (clock cycles), 289-291

EXIT, 34-36, 40

Exiting to BASIC, 238

Exponentiation, 4, 5-6, 173

Expression, 2

Extended color mode, 207-209, 221, 224-225

F (fill) command, 231

Fields (file manager), 114, 141

File manager

accessing from other programs, 98, 112, 139

commands, 140-149

displaying records, 146, 147

Index 443

fields, 114, 141

new files, 143-144

records, 119,143-144, 146

storing records, 148-149

subfiles, 141-143, 145-147

Files

built-in programs, 102, 107-108, 110-111, 141

closing, 23-24

copying, 27-28, 335

deleting (built-in programs), 126

directories, 32-33, 102, 123, 141, 332

disk, 323-360

duplicating, 15-16,27-28,335

file manager files, 140-149

linking (word processor), 101, 108-109, 115

logical file numbers, 23-24

opening, 64-66, 310-311, 325-326, 358, 368, 377,

389

renaming, 335

SCRATCHing, 84-85, 334, 347-350

. sorting (file manager), 141 -142

spreadsheet files, 132-133

unSCRATCHing, 347-350

word processor files, 107-108

Fill (F) command, 231

FIT command (spreadsheet), 122,127

FLD instruction, 114-115

Floating point accumulator, 316-318

Floating point format (spreadsheet), 127-128

Floating point numbers, 3

FOR ... TO ... NEXT, 40-42

examples, 194, 197

FORMAT command (spreadsheet), 99-100, 128

Format defaults (word processor), 113

Formatting disks

BASIC, 48-49, 332-333

Built-in software, 99-100, 128

Formatting output, BASIC

PRINT, 68-71

PRINT USING, 71-73

PUDEF, 74

SPaCing, 88-89

TAB, 92

Formatting output, built-in software, 112-120

Formulas (spreadsheet), 120-121, 131-132, 135-136

FRE (BASIC), 42

FREeze command (spreadsheet), 129, 140

FU, 105, 129

Full-screen mode (built-in programs), 105-106

Function, 2

Function keys, defining, 13,55-56

Functions, user-defined, 30-31

G (go) command, 231-232

GET, 42

GET#, 42-43

Get (machine language), 355-358, 369-371, 390

GETIN, 314

GETKEY, 42, 56

GETKEY#, 42

Go (G) command, 231-232

GOSUB, 44-45, 63, 80

GOTO (BASIC), 45, 49-50, 64

GOTO (spreadsheet), 129

GR command (built-in programs), 98

Graphic modes

clearing the screen, 45-47, 85,156, 188

color, 25-27, 66-67, 193-194, 196

coordinates, 192-193, 195, 197-199

drawing commands, 17-18, 21-23, 36-38

exiting, 13,45-47

functions, 46-47, 75-76

GRAPHIC command, 31,45-47, 156, 188, 192,

195

high-resolution mode, 45-47, 192-194, 201-204,

220-221,222-226

machine language programming, 219-226

multicolor mode, 18-20, 22, 45-47, 195-197,

204-209, 221-226

saving and recalling areas, 47-48, 89-90, 215-219

scaling, 84-85

split-screen modes, 45-47, 192, 195

text/graphic mode, 45-47, 188-192

text on graphic screens (CHAR), 18-20, 190

Graphics chip register map, 423-425

Graphs

accessing built-in graph generator, 98

bar graphs, 100

point graphs, 101

transferring to word processor, 100

using other symbols in a graph, 101

GSHAPE, 47-48,89-90,215-219

H (hunt) command, 232

HA command (built-in programs), 105-106,

129-130

Half-screen mode (built-in programs), 105-106,

129-130, 134

HEADER

BASIC, 48-49, 332-333

formatting in the built-in programs, 128

partial header, 49

HELP, 49

Hexadecimal values, 30, 49

HEX$ function, 49

Hierarchy of operators, 6

HIGHRC (spreadsheet), 142-143, 145

High-resolution graphic mode, 45-47, 192-194

bit maps, 222, 225-226

characters, 201-204,220-221,224

colors, 193-194

Index

HOME command (spreadsheet), 130

Hunt (H) command, 232

IB command (word processor), 106

ID command (built-in programs), 106, 130-131

IFTRUE (spreadsheet), 121, 131-132, 140

IF ... GOTO .. . ELSE, 49-50

IF .. .THEN ... ELSE, 50-51

IL command (word processor), 106-107

Immediate mode, 294

INC instruction, 263

Indexed indirect mode, 297

Indirect indexed mode, 296-297

Indirect mode, 295

Initializing a disk, 106, 130-131, 333-334

INPUT, 52

INPUT#, 52-53

Input/output operations, STatus, 90

Insert mode

automatic, 159-160

manual, 154, 155, 158

Inserting

blocks of text (word processor), 106

columns (spreadsheet), 125

lines (BASIC), 160

lines (word processor), 106-107

rows (spreadsheet), 138

INSTR, 53-54, 168

Instruction set, 241-292

INT, 54

INteger format (spreadsheet), 132

Integer variables, 3-4

Interrupts, 251-252, 245-255, 281-282, 297-303

Interval timer, 93-94

INX instruction, 264

INY instruction, 265

IOBASE, 316

IOINIT, 306

JMP instruction, 265-266

JSR instruction, 266-267

JOY, 54-55

Joystick readings, 55

Joysticks, 54-55, 390-393

Justification (word processor), 113, 115, 116, 132,

138

KEY command, 55-56

Keyword, 1

L (load) command, 232-233

LDA instruction, 267-268

LDX instruction, 268-269

LDY instruction, 269-270

LEFTS, 56-57, 167, 168

LEFTJ (word processor), 132

LEN, 57, 167-168

LET, 58

LF command (built-in programs), 107, 132-133

Line length (BASIC), 10,152

Lines per page (PAGELEN, word processor), 117

LINKFILE (word processor), 101, 108-109, 115

Linking word processor files, 101, 108-109, 115

LIST, 58

LISTing to the printer, 24-25

LISTN, 309

LOAD, 59-60, 324-325, 362

Load (L) command, 232-233

Load (machine language), 232-233, 351-352, 362,

366-367

Loading programs

cassette tapes, 59, 362

disks, 59-60,324-325,351-352

built-in software, 98, 107-108, 132-133

LOADSP, 313

LOCATE, 60-61

LOG, 61

Logarithms, 61, 173

Logical operators, 6-10

Loops

DO ... WHILE/UNTIL . . . EXIT . . . LOOP,

34-36

FOR ... TO ... NEXT command sequence,

40-42

LSR instruction, 270-271

Luminance, 25-27, 81-82, 186-188

M (memory) command, 233-234

Machine language

close, 311, 355, 359, 368, 377-378, 389

data files, 354, 368

datassette, 364-371

diskdrive, 350-360

examining a program (disassemble), 230-231

executing programs, 91-92

function key definitions, 171-172

get, 355-358,369-371,390

graphics, 219-226

joysticks, 392-393

loading, 232-233, 351-352, 362, 366-367

monitor, 62, 405

music, 178-180

open, 310-311, 354, 358, 368, 377, 389

Index 445

print, 355, 369, 378-379, 389-390

printer, 377-380

programming, 227-322

RS232, 389-390

saving, 236,351,365-366

subroutines, 95, 266-267

unNEWing programs, 183-184

verifying, 237-238, 352-354, 367-368

Manual mode (spreadsheet), 133

MAP (spreadsheet), 100, 105, 130, 133-135

Margins (word processor), 113, 116, 119

Mathematics

calculations, 172-174

functions, 13, 14, 15, 29, 30, 40, 49, 54, 61, 92, 95

operators (BASIC), 5

spreadsheet, 120-121

Matrix. See Arrays.

MEMBOT, 307

Memory available, 42

Memory execute (M-E), 346-347

Memory (M) command, 233-234

Memory maps, 224-226, 423-439

Memory read (M-R), 344-345

Memory usage, 425-427

BASIC graphics, 46, 188

reducing, 12-13

Memory write (M-W), 345-346

MEMTOP, 307

Merging word processor files, 107-108

MF command (word processor), 107-108

Microprocessor (6502), 227, 239-297

MID$, 61-62, 167, 168

Modems, 380-388

MONITOR, 62, 183-184, 228

Moving BASIC RAM, 321-322

Multicolor mode, 45-47, 195-197

bitmaps, 223-224,226

CHAR, 18-20

characters, 204-209, 221-222, 225

colors, 22, 196

example, 272

Multiplication by two (example), 275

Music, 174-180,421-422

Nesting loops, 41, 51

NEW command, 62, 183-184

NEWTF (file manager), 143-144

NEXTPAGE (word processor), 116

NOJUSTIFY (word processor), 116

NOP instruction, 271

NOT, 8-9

Notes (musical), 87-88, 174-180, 421-422

NOTIFTRUE (spreadsheet), 121, 135-136, 140

NO#PAGE (word processor), 117

NOWRAP (word processor), 116

NR command (file manager), 144

Numbers, 3

OFF (spreadsheet), 136

ON ... GOSUB, 63

ON... GOTO, 64

Opcodes, 229, 288-289, 291-292

OPEN, 64-66, 325-326

Open (machine language), 310-311, 354, 358, 368,

377, 389

Operating system, 303-316

Operator, 2

Operators

arithmetic, 5

comparison, 6

logical, 6-10

mathematical (BASIC), 5

mathematical (spreadsheet), 120-121

relational, 6

OR, 8, 9-10

ORA instruction, 271-272

OTHER (word processor), 117

Output. See also Formatting.

linking word processor files, 101, 108-109, 115

printer commands (BASIC), 23-24, 24-25,

64-65, 68-71

printer commands (word processor), 112-120

printer types (word processor), 117

redirecting (CMD), 24-25

suspending a printout (word processor), 117, 118

Overflow, two's complement, 239, 252

P* command (word processor), 108

PAGELEN (word processor), 117,118

PAGEPAUSE (word processor), 117

#PAGE (word processor), 117

PAINT, 22, 66-67

PAPERSIZE (word processor), 117-118

Parameter, 2

PAUSE, 118

PEEK, 67, 151-152

PHA instruction, 272-273

PHP instruction, 273-274

PI command (file manager), 145-146

Pixel cursor, 18, 38, 60-61, 197-199

PLA instruction, 274

PLOT, 315

PLP instruction, 274-275

Pointers (word processor), 103, 104, 106, 111

446 Index

POKE, 68, 151-152

POS, 68

PR command (word processor), 108-109

Precision, numeric, 3-4, 172

PRINT, 19, 68-70, 190

Print (machine language), 355, 369, 377-380,

389-390

PRINT USING, 71-73, 74, 190

PRINT#, 70-71, 334

PRINT# USING, 71-73

Printer command characters, 373-374

word processor, 113

Printers, 371-380

Printing programs, 24-25

Printing word processor files, 108, 112-120

Program counter, 239

Program files, 328

Programs

lines, 152-153

loading BASIC, 34, 59-60, 325

loading machine language, 232-233, 351-352,

362, 366-367

machine language, 227-322

saving BASIC, 38-39, 83-84, 325

saving machine language, 236, 351, 365-366

verifying, 237-238, 325, 352-354, 367-368

PUDEF, 71,74

Punctuation, 69-70

Quote mode, 21, 153-154, 155, 158,408-415

printer, 374

R (register) command, 235

RAM relocating, 321-322

RAMTAS, 306

Random number generation, 82-83, 174

example, 181

Raster interrupts, 299-300

Raster lines (examples), 256-257, 299-300

RC instruction (word processor), 118

#RC instruction (word processor), 118

RCLR, 75, 76

RCO (spreadsheet), 136-137

RDEL (spreadsheet), 137

RDOT, 75-76

RDTIM, 314

RE command (word processor), 109-110

READ, 29, 76-77, 79

READSS, 309-310

Records (file manager), 141, 144, 146, 148-149

Redefining function keys, 55-56, 169-170

Reducing screen display, 161 -162

Register (R) command, 235

Registers, 239-240

changing (;) command, 235-236

R (register) command, 236

Relational operators. See Comparison operators.

Relative files, 328-331

Relative mode, 294-295

Relocating BASIC RAM, 321-322

REM, 77

RENAME, 77-78, 335

RENUMBER, 78-79

RESET, 137-138

RESET (machine language), 316

RESETLIST (file manager), 146-147

RESTOR, 306

RESTORE, 29-30, 76-77, 79

RESUME, 80

RETURN, 80

Reverse mode, 20, 99, 158

RGR, 80-81

Right justification (word processor), 115, 138

RIGHTS, 81, 167, 168

RIGHTJ (spreadsheet), 138

RINS (spreadsheet), 138

RLUM, 81-82

RMARG (word processor), 119

RND, 82-83

ROL instruction, 275-276

ROM, 304-305

ROM subroutine error messages, 405

ROR instruction, 276

Rounding numbers, 54, 173

RS-232C, 380-390

RTI instruction, 277

RTS instruction, 278

RUN, 83

S (save) command, 236

SAVE, 83-84, 325, 362

Save (machine language), 236, 351, 365-367

SAVESP, 313-314

Saving programs

DSAVE command, 38-39, 324

SAVE command, 83-84, 325, 362

SF (built-in programs), 110-111, 139

Saving records (file manager), 148-149

SBC instruction, 278-280

SCALE, 84-85

Scientific notation, 4

SCNCLR, 85, 156

SCNKEY, 308

SCRATCH, 85-86, 334, 347-350

Screen

changing colors, 24-27, 66-67, 99, 125, 193-194

clearing, 45-47, 85, 154, 156, 188

display codes, 418-420

Index 447

display reduction, 161

editing with Escape keys, 156-163

graphic modes, 45-47, 186-222

memory map, 151

windows, 162

Screen memory (examples), 261, 282

Scrolling control, 158-159, 209-211

SCRORG, 315

Search and replace (word processor), 109-110

Searching file manager files, 147-148

Searching word processor documents, 109-110,

111-112

SEC instruction, 280

SECND, 307

SED instruction, 280-281

SEI instruction, 281-282

Sequential files, 326-327

Serial bus, 358, 379

SETLFS, 310

SETMSG, 307

SET#PG (word processor), 119

SETNAM, 310

SETTIM, 314

Setting pointers (word processor), 111

SETTMO, 308

SF (built-in programs), 110-111, 139

SGN, 86-87

SIN, 87

Sorting file manager records, 141-143

SOUND, 87-88, 96, 174-176, 421-422

Sound (machine language), 178-180

SPC, 88-89, 92

Speeding program execution, 13, 172-173

Split-screen graphic modes

CHAR messages, 20

GRAPHIC command, 45-47

high resolution, 45-47, 192

multicolor, 45-47, 195

Spreadsheet

accessing, 98, 112, 148

commands, 120

cursor control, 120, 129, 130

formulas, 120-121

graphs, 100-101

transferring to word processor, 122-123,

129-130, 133-135

SQR, 89

SR command (file manager), 147-148

SSHAPE, 47-48, 89-90, 215-219

STA instruction, 282

Stack, 240-241

example, 285-286

Stack pointer, 240

STatus, 90

Status register, 239-240

STOP, 27, 91

STOP (machine language), 314

STR$, 91, 168-169

String variables, 2-3, 5

Strings, comparing, 10

Strings, searching, 53

STX instruction, 283

STY instruction, 283-284

Subfiles (file manager), 141-143, 145-147

Subroutines

BASIC, 44-45, 62-63, 80

machine language, 95, 241, 266-267, 278,

318-320

Substring functions, 167

Subtraction, double precision (machine language),

247, 279

SYS, 91-92,318-320

$$ format (spreadsheet), 140

T (transfer) command, 237

TAB, 89, 92

Tabs (word processor), 101, 103

TALK, 309

TAN, 92-93

TAX instruction, 284

TAY instruction, 285

TC command (built-in programs), 112

Telecomputing, 380-390

Text mode, 188-192

Text strings, 3-4, 10, 53-54, 56-57, 61-62, 81,91,

95, 163-169

TF command (built-in programs), 112, 139, 148

TF:;RC instruction (word processor), 119

THAW command (spreadsheet), 140

TI, 93

TI$, 93-94

Timer interrupts, 300-303

TKSA, 307

TRANSFER (spreadsheet), 140

Transfer (T) command, 237

Transferring data

file manager to word processor, 114-115, 118, 119

graph generator to word processor, 100

spreadsheet to word processor, 105, 122-123,

129-130, 133-135

TRAP, 39,80,94, 185

example, 64

Trigonometric calculations, 14, 28, 87, 92, 173

TROFF, 94

TRON, 95

TSX instruction, 285-286

TTL instruction (word processor), 119

TW command (built-in programs), 139, 148

TXA instruction, 286-287

TXS instruction, 287

TYA instruction, 287-288

448 Index

UD, 148-149

UDTIM, 315

UNLSN, 309

UnNEWing, 183

UnSCRATCHing, 347-350

UNTIL, 34-36, 95

UNTLK, 309

User-defined functions, 30-31

User files, 331-332

User groups, 439

USR, 316-317

Word processor

accessing, 98, 139, 148

commands, 101-120

cursor control, 101 -102

formatting documents, 112-120

graphs, 100-101

linking multiple files, 101

transferring from file manager, 114-115, 118, 119

transferring from spreadsheet, 105, 122-123,

133-135

Wordwrap, 116, 120

WRAPON (word processor), 120

V (verify) command, 237-238

VAL, 95, 168-169

Validating a disk, 334

Variables, 2-3, 5, 24

VECTOR, 306

VERIFY, 96, 326, 362-363

Verify (V) command, 237-238

Verify (machine language), 352-354, 367-368

VOL, 87, 96-97, 174

X (exit) command, 238

X register, 240

X-off, 383,431

X-on, 383,431

XOR, 9-10

Y register, 240

WAIT, 97

example, 361-362

Wedge (BASIC), 321

WHILE, 34-36, 97

Zero page indexed mode, 296

Zero page mode, 294

More Commodore Books from Scott, Foresman and Company

Programming Commodore Graphics with Your 64 or 128

This highly readable tutorial will help you expand your graphics programming skills

on your C-64 and on the new C-128. It covers character graphics, sprites, and

bit-mapped graphics, and offers timesaving programming tools. By Lane. $14.95,

224 pages

The Commodore 64 Family Helper

This book/software package gives you 5 extremely useful family programs: a complete

word processing program, a database manager, memo calendar, checkbook manager,

and backgammon game. By Daley & Daley. $19.95,192 pages

Commodore 64 Tutor for Home and School

Learn Logo, PILOT, and BASIC quickly and easily on your Commodore 64. Includes

many examples, illustrations, and 3 full-length sprite and music programs. By Knott

& Prochnow. $21.95, 210 pages

To order,

contact your local bookstore or computer store, or send the order card to

Scott, Foresman and Company, PPG

1900 East Lake Avenue

Glenview, IL 60025

In Canada, contact

Macmillan of Canada

164 Commander Blvd.

Agincourt, Ontario

M1S3C7

I I

Order Form

Send me:

Programming Commodore Graphics, $14.95, 18084

Commodore 64 Family Helper, $19.95, 18059

Commodore 64 Tutor, $15.95, 18074

LJ Check here for a free catalog

Please check method of payment:

I I Check/ Money Order I I MasterCard I I Visa

Amount Enclosed $.

Credit Card No.

Expiration Date

Signature

Name (please print)

Address

City : State Zip

Add applicable sales tax, plus 6% of Total for U.P.S. (Publisher pays

regular book rate).

Full payment must accompany your order. Offer good in U.S. only.

A18249

"Anyone who is writing software for this computer will find it

necessary to have this book at hand."-Dr. Richard F. Daley,

Microcomputer writer and consultant

Whether you're writing programs for yourself or for commercial

distribution, you'll find this book an indispensable guide to

programming the Commodore Plus/4.

Written in a clear, easy-to-understand style, this complete handbook

includes extensive reference material and many practical

programming examples. The Programmer's Reference Guide for

the Commodore Plus/4

fully describes the use of each BASIC 3.5 command

gives tips on using the built-in integrated software

reviews major programming techniques

1 offers a graphics tutorial in BASIC and machine language

explains how to use the machine language monitor, 6502

assembly language, and the operating system

offers information on using major Plus/4 peripherals and more.

You'll find over 200 short program examples, in-depth information

not found in the Plus/4 manual, and helpful explanations of DOS and

BASIC error messages. In addition, the appendices provide the

Plus/4 memory and register maps and other important technical

specifications. This quick, handy reference will be invaluable to

all programmers, from beginners to professionals.

A resident of Abington, Pennsylvania, Cyndie Merten is a founding member

of Dyadic Software Associates, a microcomputer consulting firm. She

was previously a programmer for Commodore Business Machines.

Sarah Meyer is a free-lance technical writer who has published two other

books about the Plus/4. A resident of Conway, Massachusetts, Ms. Meyer

was formerly a Technical Writer and Editor at Commodore Business

Machines.

Scott, Foresman and Company isbn

